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Engineering Extreme Materials with Defects and Nonlinearity 

Chiara Daraio 

 

We study the fundamental dynamic response of discrete nonlinear systems and study the effects of 

defects in the energy localization and propagation. We exploit this understanding to create 

experimentally novel materials and devices at different scales (for example, for application in energy 

absorption, acoustic imaging and energy harvesting). We use granular systems as a basic platform for 

testing, and control the constitutive behavior of the new materials selecting the particles' geometry, 

their arrangement and materials properties. Ordered arrangements of particles exhibit a highly 

nonlinear dynamic response, which has opened the door to exciting fundamental physical 

observations (i.e., compact solitary waves, energy trapping phenomena, and acoustic rectification). 

This talk will focus on energy localization and redirection in one- and two-dimensional systems. 
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Normal Modes of Nonlinear Systems: Numerical Computation and Experimental Identification 

Gaetan Kershen, University of Liege 

 

Today, the demand to utilize nonlinear (or even strongly nonlinear) structural components is 

increasingly present in engineering applications. In this context, a rigorous nonlinear analog of modal 

analysis would help engineers address the challenges associated with nonlinear designs. During the 

past couple of decades, the theory of nonlinear normal modes (NNMs) has been developed for this 

purpose. In this presentation I will first focus on the direct problem, i.e., the computation of NNMs 

from mathematical models, and demonstrate that the nonlinear dynamics exhibited by large-scale 

structures can be interpreted thanks to NNMs. The inverse problem, i.e., how NNMs can be 

identified from data measured on the structure subjected to harmonic or broadband forcing, will 

then be described. Both undamped and damped NNMs will be discussed.  
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Unified nonlinear and dissipative electroelastic dynamics of piezoelectric structures for 
energy harvesting, sensing, and actuation 
 
Stephen Leadenham and Alper Erturk* 
G.W. Woodruff School of Mechanical Engineering 
Georgia Institute of Technology 
Atlanta, GA 30332 
* alper.erturk@me.gatech.edu  
 

Inherent nonlinearities of piezoelectric materials are 
pronounced in various engineering applications such as 
actuation, sensing, their combined implementations in 
feedback problems such as vibration control, and most 
recently, in energy harvesting from dynamical systems.1,2 
The existing literature focusing on the dynamics of 
electroelastic structures made of piezoelectric materials 
have explored such nonlinearities in a disconnected way for 
the separate problems of mechanical and electrical 
excitation such that nonlinear resonance trends have been 
attributed to different additional terms in constitutive 
equations by different researchers. Experimental 
manifestations of nonlinearities have been attributed to 
purely elastic nonlinear terms,3 purely electrical nonlinear 
terms in electric field,4 and combination of elastic softening 
and coupling nonlinearities5,6 by various authors. However, 
a reliable nonlinear constitutive equation pair for a given 
piezoelectric material is expected to be rather unique and 
valid regardless of the application, such as energy harvesting, sensing, or actuation. A systematic approach 
focusing on the two-way coupling can result in a sound mathematical framework. To this end, the present work 
investigates the nonlinear non-conservative dynamic behavior of a bimorph piezoelectric cantilever under low-
to-high mechanical and electrical excitation levels in energy harvesting, sensing, and actuation. A 
mathematical framework is developed and analyzed by using the method of harmonic balance to identify and 
validate the nonlinear and dissipative system parameters for energy harvesting (Figure 1a) and dynamic 
actuation (Figure 1b) based on a set of rigorous experiments (Figure 2).   

The nonlinear constitutive equation pair of the piezoelectric laminates employed in this work can be given 
along with the hysteretic dissipation function as follows: 

2 3 2

1 11 1 1 31 3 111 1 1111 1 311 1 3 3111 1 3
(1 | |)T c S S e E c S c S e S E e S E                            (1) 

          2

3 31 1 33 3 311 1 3 3111 1 3
D e S E e S E e S E                 (2) 

3

11 1
4 | | /3

dis
U c S                     (3) 

where T1 is the bending stress, S1 is the bending strain, D3 is the electric displacement, E3 is the electric field, 
c11 is the linear elastic modulus, c111 and c1111 are the higher order elastic terms, e31 is the linear piezoelectric 
constant, e311 and e3111 are the higher order piezoelectric constants, and  33 is the permittivity constant. 
Ferroelastic softening is due to  , while the associated hysteretic loss Udis is proportional to  . This nonlinear 

and dissipative framework is a synthesis of recent efforts by von Wagner and Hagedorn5 and Stanton et al.6 
(for higher order terms in the Gibbs free energy expansion), and Goldschmidtboeing et al.7 (for the ferroelastic 
hysteresis model). In the existing literature, the former approach5,6 excludes hysteretic effects (and attributes 
the losses to other terms such as air damping6), while the latter7 accounts for hysteresis only.  

In a set of experiments (Figure 2), this model has been validated for a broad range of excitation levels in 
energy harvesting (e.g. Figure 3 for 1g base excitation) and dynamic actuation (Figure 4). Among other results, 
the importance of quadratic softening and dissipative nonlinearities (even for a cantilever with symmetric 
laminates) originating from the hysteresis model is pointed out for moderate excitation levels. Higher-order 
softening and coupling terms from the Gibbs free energy become effective for high excitation levels.   

 
Figure 1: Schematics of bimorph piezoelectric 
cantilevers used for (a) vibration energy harvesting 
from base excitation and (b) dynamic actuation.



2 
  

                 
 

 
 

 
 
Acknowledgments 

This work was supported in part by the National Science Foundation under Grant CMMI-1254262.  

References 
1 Erturk, A. & Inman, D. J. Piezoelectric energy harvesting.  (John Wiley & Sons, 2011). 
2 Elvin, N. & Erturk, A. Advances in energy harvesting methods.  (Springer, 2013). 
3 Wolf, K. & Gottlieb, O. Nonlinear Dynamics of a Cantilever Beam Actuated by Piezoelectric Layers in Symmetric and 

Asymmetric Configuration.  (2001). 
4 Tiersten, H. Electroelastic equations for electroded thin plates subject to large driving voltages. J Appl Phys 74, 3389-3393 

(1993). 
5 Von Wagner, U. & Hagedorn, P. Piezo-beam systems subjected to weak electric field:experiments and modeling of 

nonlinearities. Journal of Sound and Vibration 256, 861-872 (2002). 
6 Stanton, S. C., Erturk, A., Mann, B. P. & Inman, D. J. Nonlinear piezoelectricity in electroelastic energy harvesters: 

modeling and experimental identification. J Appl Phys 108, 074903 (2010). 
7 Goldschmidtboeing, F., Eichhorn, C., Wischke, M., Kroener, M. & Woias, P. in Proceedings of the 11th International 

Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications.  114-117. 

(a) (b) 

(c) (d) 

Figure 2: Close-up pictures of the experimental configurations for 
(a) energy harvesting from base excitation (with a controlled shaker 
for constant base acceleration frequency sweep tests) for a set of 
electrical load resistance values ranging from short- to open-circuit 
conditions and (b) dynamic actuation experiments in fixed-free 
boundary conditions for a range of actuation voltage levels. Tip 
velocity of the cantilever in both cases is measured by a laser 
Doppler vibrometer.  

Figure 3: Nonlinear (a) tip 
velocity, (b) voltage output, 
(c) current output, and (d) 
power output frequency 
response curves for a set of 
load resistance values
(ranging from 1 k  to 10
M ) under a constant base 
excitation magnitude of 1g
RMS. Solid blue curves are 
experimental data, and 
dashed red curves are the 
nonlinear model predictions 
with harmonic balance 
analysis. Arrows indicate 
the direction of increasing 
load resistance.  
 

(a) (b) 

(a) (b) Figure 4: Dynamic actuation frequency 
response curves for the (a) transverse tip 
velocity of the cantilever and (b) current 
drawn by the cantilever (i.e. dynamic 
admittance multiplied by voltage). Solid 
blue curves are experimental data, and 
dashed red curves are the nonlinear 
model predictions with harmonic balance 
analysis. Arrows indicate the direction of
increasing actuation voltage amplitude
(from 10mV to 10V). The mismatch for 
low voltage level cases is because the 
current signal level is below the noise 
floor of the data acquisition system.  



Energy pumping between a main oscillator and a nonsmooth nonlinear energy sink
with time-dependent masses

Alireza TURE SAVADKOOHI∗, Claude-Henri LAMARQUE ∗
∗ENTPE, Université de Lyon, LGCB and LTDS UMR CNRS 5513, France.

Summary. Energy exchange between a main oscillator and a nonsmooth nonlinear energy sink (NES) by consideration of two different
cases is studied: i) the main sturcutre with time-dependent mass is coupled to a nonsmooth NES with constant mass; ii) the main
structure possesses constant mass while the mass of the nonsmooth NES is varying.

Case i: the main structure with time–varying mass and coupled nonsmooth NES

Let us consider an academic model of a 2dof system which is consists of a main structure with time-dependent mass
(that is a smooth function of time), damping and elastic stiffness as M̃(t) (M̃(t) = M0(1 + ϵM(t))), C and k1 which is
coupled to a non-smooth NES with the mass m. The mass m can move freely in a clearance of 2δ until it reaches to elastic
springs with the stiffness k2 at two sides. The overall damping of the NES system is supposed to be λ̃. If we assume that
the mean velocity at which the mass is ”leaving or entering” the mass of the main system in the x direction is zero, then
governing equations of the system can be summarized as [1]:

M̃(t)ẍ1 + Cẋ1 + k1x1 + F̃ (x1 − x2) + λ̃(ẋ1 − ẋ2) +
˙̃
M(t)ẋ1 = Γ sin(Ωt)

mẍ2 + F̃ (x2 − x1) + λ̃(ẋ2 − ẋ1) = 0
(1)

The non-smooth potential F̃ of the NES is defined as:

F̃ (z) = −∂V (z)

∂z
= −F̃ (−z) =

 0 −δ ≤ z ≤ δ
k2(z − δ) z ≥ δ
k2(z + δ) z ≤ −δ

(2)

ϵ is a small parameter which corresponds to ratio of the mass of NES and initial mass of the main system, i.e. 0 < ϵ =
m

M0
<< 1. We assume that (1 + ϵM(t)) ≥ 0 for a time long enough. We would like to re-scale the system with respect

to the new time domain T where T = t

√
k1
M0

= tϑ. At the new time domain we use following replacements of variables:

xi(t) → yi(T ). Following change of variables are considered:
C√
M0k1

= ϵζ,
1

k1
F̃ = ϵF̂ , k =

1

ϵ

k2
k1

,
λ̃√
M0k1

= ϵλ,

1

k1
Γ = ϵf0 and

Ω

ϑ
= ω and we assume that k = o(ϵ0). We transfer the system to the coordinates v = y1 + ϵy2 and

w = y1 − y2 and then we apply complex variables of Manevitch i.e. φ1e
iωT = v̇ + iωv and φ2e

iωT = ẇ + iωw with
i =

√
−1. The system is studied around 1 : 1 resonance by imposing ω = 1 + σϵ. By using Galerkin’s technique and

keeping first harmonics and truncating higher ones and also ignoring higher orders of ϵ, system equations read:

φ̇1 +
i

2
(1 + σϵ)φ1 +

ϵ

2(1 + ϵ)
ζφ1 −

i

2(1 + ϵ)(1 + σϵ)
(φ1 + ϵφ2) +

i

2(1 + ϵ)(1 + σϵ)
(ϵm0φ1 − ϵm2φ

∗
1)

+
1

2(1 + ϵ)

(
2i(1 + σϵ)ϵm2φ

∗
1

)
= − iϵf0

2

φ̇2 +
i

2
(1 + σϵ)φ2 +

ϵ

2(1 + ϵ)
ζφ1 −

i

2(1 + ϵ)(1 + σϵ)
(φ1 + ϵφ2) +

i

2(1 + ϵ)(1 + σϵ)
(ϵm0φ1 − ϵm2φ

∗
1)

− i

2
(1 + ϵ)φ2G(|φ2|2) +

1 + ϵ

2
λφ2 +

1

2(1 + ϵ)

(
2i(1 + σϵ)ϵm2φ

∗
1

)
= − iϵf0

2

(3)

G(χ) is the averaged form of the nonsmooth potential. We would like to study system behavior at fast and slow time
scales. To this end, we should analyze the system at different scales of ϵ. The behavior of the system during fast time
scale and at its fixed point reveals its invariant manifold as N1 = H(N2) where φ1 = N1e

iδ1 and φ2 = N2e
iδ2 . If we

analyze system behavior at slow time scale around its invariant manifold, following reduced order of system equations
can be obtained:

∂N2

∂τ1
=

Σ1(N2, δ2)

E(N2)
,
∂δ2
∂τ1

=
Σ2(N2, δ2)

E(N2)
(4)

Ordinary equilibrium points of the system are those who satisfy E(N2) ̸= 0 and Σ1(N2, δ2) = Σ2(N2, δ2) = 0. In
addition to ordinary equilibrium points, the system may posses fold singularities that satisfy E(N2) = Σ1(N2, δ2) =
Σ2(N2, δ2) = 0. Let us take a mass profile which is depicted in Fig. 1a and study the system under external forcing
term f0 = 3.624. We take direct numerical integration of re-scaled form of the system (1) by assuming following initial
conditions y1(0) = 1.5 and y2(0) = y′1(0) = y′2(0) = 0. Zeros of the reduced order of system equations at slow time



scale are depicted in Fig. 1b. The system has two equilibrium points namely no. 3 and 6, four fold singularities, namely
no. 1, 2, 4 and 5 and another equilibrium point, α, which is in the unstable area of the system. Detailed analysis reveals
that points 1 and 2 are saddle and node, points 5 and 6 are saddle and equilibrium points no. 3 and 6 are stable. The
invariant manifold of the system and obtained numerical results are illustrated in Fig. 1c. This figure shows that the
system repeatedly faces bifurcations between its stable zones. This behavior is named as ”strongly modulated response”
[2] and it is the result of existence of fold singularities (E(N2) = Σ1(N2, δ2) = Σ2(N2, δ2) = 0).
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Figure 1: From left to right a) mass profile of the main system; b) zeros of the reduced order of system equations at slow time scale:
Σ1 = 0 (—), Σ2 = 0 (− − −), E = 0(−·−·−); c) invariant manifold and corresponding numerical results.

Case ii: the main structure with constant mass and coupled nonsmooth NES with time-varying mass

The main linear structure with constant mass M is coupled to a nonsmooth NES with the potential which is described in
Eq. (2) and with the time-varying mass m̃(t) = m0(1 + ϵm(t)), where 0 < ϵ =

m0

M
<< 1. We have:

Mẍ1 + Cẋ1 + k1x1 + F̃ (x1 − x2) + λ̃(ẋ1 − ẋ2) = Γ sin(Ωt)

m̃(t)ẍ2 + F̃ (x2 − x1) + λ̃(ẋ2 − ẋ1) + ˙̃m(t)ẋ2 = 0
(5)

The same steps of the previous section are adopted: i.e., re-scaling the system, change of system coordinates, ap-
plying complex variables of Manevitch, endowing Galerkin’s technique and detecting system behaviors at fast and
slow time scales. We are able to detect invariant manifold of the system at fast time scale and then to obtain re-
duced order of system equations at slow time scale in order to highlight equilibrium and singular points of the sys-
tem. In this section we do not present detailed results and we just present the application of such a system in pas-
sive control of main structures. The assumed profile of the mass of the NES is illustrated in Fig. 2a where m(T ) =
m0r +2

(
m1r cos(ωT )−m1i sin(ωT )

)
+2

(
m2r cos(2ωT )−m2i sin(2ωT )

)
. Histories of the displacements of the main

structure without and with coupled nonsmooth NES with time-varying mass which are obtained by direct numerical inte-
grations of system equations are depicted in Fig.2b. This figure shows the capability of the attached nonsmooth NES in
passive control of the main structure. Histories of the amplitudes of the main structure and the NES during the passive
control which are given in Figs.2c and 2d show that the system present strongly modulated response during passive control
process.
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Figure 2: From left to right a) mass profile of the NES: m0r = 1.57, m1i = 0.5, m1r = 0, m2i = 0.25 and m2r = 0; b) Displacement
histories of the main structure; c) Amplitude histories of the main structure; d) Amplitude histories of the NES.
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Introduction: Targeted Energy Transfer (TET) concept based on an additional essentially nonlinear
attachment also named Nonlinear Energy Sink (NES) to an existing primary linear system has been
extensively studied from theoretical, numerical and experimental point of views. It provided very ef-
ficient reduction for vibration and noise. These studies include transient and steady state dynamic
analysis. More recently multi-forcing frequencies has been considered in [1] where two excitation
frequencies are used, one equal to the resonance frequency of the primary system, the other one situ-
ated in its vicinity. Results show strong modification of the response regimes. Two additive sinusoidal
components at both resonance frequencies of the primary system were considered in [2] showing that
a two one-to-one resonances of the system is possible simultaneously resulting on vibration reduc-
tion around the two resonance frequencies. The present work aims at understanding how TET occurs
under quasi-periodic external excitation. As in [3], the primary system is an acoustic medium. The
main objective of this study is to obtain experimental confirmations of the simultaneous efficiency of
a single NES on a linear system under two-frequency excitation with frequencies near the resonance
frequencies of the linear system.

The acoustic system and the NES: The system (shown in Fig. 1(a,b)) consists of an acoustic medium
coupled to a simple thin circular clamped visco-elastic membrane (the NES) by means of a coupling
box. The acoustic medium composed of two pipes of different lengths and section areas opened
on both ends. The coupling between the pipes and the membrane is ensured acoustically by the air
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)

(c)     
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(out−of−phase)
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Figure 1: (a) Picture and (b) schema of the set-up. (c) RMS velocity of the NES under one-frequency excitation:
comparison of experiment (dotted lines) and model (continuous lines) for several excitation levels. Also shown:
Nonlinear Normal Modes (black curves).

in a coupling box, which is sufficiently large to give a weak linear coupling stiffness. An acoustic
source consisting of a loudspeaker and a coupling box which is connected to the entrance of both
pipes is used. A simple model to predict qualitatively the behavior of the vibroacoustic system was
developed as reported in [4]. Experimental and numerical results under one-frequency excitation in
the neighborhood of two resonance frequencies (f 0

1 ' 88 Hz, f 0
2 ' 98.5 Hz) are reported Fig. 1(c)

showing the NES acts separately on around the two resonance frequencies.



Results under two-frequency excitation (fA and fB): The quasi-periodic regimes (1:1-1:1) were
studied analytically using the complexification method combined to the averaging method. A local
stability diagram of the quasi-periodic regimes is reported Fig. 2(1) using the excitation frequencies
(fA(= σ1ω

−1
1 ) in the neighborhood of f 0

1 and fB(= σ2ω
−1
2 ) in the neighborhood of f 0

2 ) as control pa-
rameters. Zones where no stable quasi-periodic regime occurs are shown in black. The corresponding
NES velocity amplitude along the segment line EF (constant fB and scanning fA) is reported Fig.
2(2).
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Figure 2: (1) Local stability diagram. (2) NES velocity amplitude along the segment line EF.

An extended experimental dataset of the system response was analyzed under steady state excitation at
two frequencies. Thresholds between low and high damping states within the system and associated
noise reduction were observed and quantified thanks to frequency conversion and RMS efficiency
indicators. It is shown as observed in Test08 corresponding to scanning fA and constant fB = 98.8 Hz
(in line with the segment line EF) that the membrane NES acts (see Fig. 3(1)) simultaneously and
efficiently on two acoustic resonances (see Fig. 3(2,3)). In all cases, the introduction of energy at
a second excitation frequency appears favorable to lower the frequency conversion threshold and
to lower the noise within the linear system. In particular a simultaneous control of two one-to-one
resonances by the NES is observed. These results will be discussed.

Figure 3: (1) RMS measured velocity of the NES and ratios of the RMS measured sound pressure (with NES)
and the sound pressure considering the underlying linear system (without NES) for (2) the pipe 1 and (3) the
pipe 2 for several excitation levels.
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Tuned Pendulum as Nonlinear Energy Sink for Broad Energy Range 
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Nonlinear Energy Sinks (NES) are widely studied as possible engineering solution for 

mitigation of steady-state, impulsive, transient and broadband excitations. Current work is 

devoted to applicability of common pendulum as the NES for mitigation of impulsive 

excitations. It turns out that if the pendulum is tuned at linear frequency of the primary mass, 

it can overcome one of main shortcomings of traditional NES designs and efficiently absorb 

energy in a wide range of energies. The reason is that for small energies the pendulum 

responds as tuned mass damper; at higher energies the pendulum acts as rotational NES. 

Thus, relatively broad diapason of energies can be covered. 

The model of the eccentric NES is presented in Figure 1. 

 

 

 

 

We demonstrate numerically that the properly tuned pendulum can be used as the NES and 

indeed has broader energy range than regular rotational NES. We study analytically and 

numerically the dynamics of such pendulum NES and explore corrections to a structure of its 

slow invariant manifold caused by presence of the gravity. Besides, we discuss the 

relationship between the pendulum NES performance and variation of its initial conditions, as 

one can see in Figure  - the mean time for sufficient energy absorbance and its standard 

deviation for different values of initial energy, given by different values of initial conditions, 

with account of the gravity. 

Figure 1- Scheme of primary mass with attached eccentric rotator 



 

 

 

 

 

 

 

 

Figure 2 – The average characteristic time of energy dissipation and its standard deviation 

for different values of initial energy, with account of different values of initial conditions  

As one can conclude from Figure , the most efficient design coefficient for energy 

absorbance, both for low energy values and for higher ones, was found for 1β ≈  . It 

corresponds to an internal resonance in the NES system, between the natural frequency of the 

main mass's translations, and the natural frequency of the pendulum oscillations. In rotational 

regimes, the effect of the gravity on the NES performance turns out to be relatively small. 
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Summary. This work considers the effect of mechanical damping on the performance of vibration-based energy harvesting

system. In particular, the time-averaged power harvested is evaluated for two different physically motivated nonlinear

mechanical damping models, friction damping and a physically derived cubic nonlinear damping, and compared against

the performance of the more commonly used linear mechanical damping. It is shown that for each model of damping

the harvested energy decays as the strength of the mechanical damping increases. However, the decay in performance is

very different for the three models in question, so that the optimal design of the system depends critically on the form

of the mechanical damping present in the system.

Introduction

Vibration-based energy harvesting involves the conversion of mechanical into electrical energy by means of
electro-mechanical coupling, such as electromagnetic, piezoelectric, magnetostrictive, or electrostatic transduc-
tion. Many common designs incorporate an attached mass to an oscillating source as a mechanism for the
mechanical displacement and as a source for the electro-mechanical coupling. The properties of this attach-
ment, including the coupling and electrical component, must then be chosen to maximize the harvested power.
For a linear device, the system is typically tuned so that the attachment is in resonance with the underlying
mechanical oscillations to maximize the relative displacement of the attachment, thereby maximizing the me-
chanical energy available to harvest. Then, the electro-mechanical coupling and the electrical load are then
tuned to maximize the harvested energy. For simple resistive electrical loads the optimal electro-mechanical
coupling and load is tuned to match the existing mechanical damping present in the system [1]. However,
these results assume that the mechanical damping is linear in form. The response of the system with other
forms of damping has received much less attention. While the mechanical damping in the attachment limits
the time-averaged power that can be harvested, the subsequent tuning depends on the form of the mechanical
damping.

Model

A simple design of an electromechanical energy harvesting device is proposed and modeled by a single degree-
of-freedom system. The displacement of the attached mass is defined as z, the mass of the attachment is ma,
and the corresponding stiffness is ka. The electro-magnetic coupling and a resistive load, the electro-mechanical
coupling is equivalent to viscous damping with coefficient be. Finally, the mechanical damping is represented
by the force fa,damping(z, ż), so that the equation of motion for the proposed model is

ma z̈ + fa,damping(z, ż) + be ż + ka z = −ma ü. (1)

The system is assumed to be driven by constant amplitude base acceleration, so that ü ≡ A sin(ω t). The
average power over a forcing cycle of T = 2π/ω can then be determined as

Pavg =
1

T

∫ T

0

be ẋ
2 dt (2)

The mechanical damping is assumed to take one of three forms

fa,damping(z, ż) = λ
ż

|ż|
, Coulomb friction, (3a)

= λ ż, Linear damping, (3b)

= λ z2 ż, Cubic damping (3c)

Note that the form of the cubic damping arises naturally in nonlinear energy harvesters based on essentially
nonlinear elements [2].
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Figure 1: Average harvested power.

Results and Conclusions

The numerical simulations were performed with

ω = 1.00, ma = 1.00, be = 0.25, k = 1.00. (4)

Note that the mass and stiffness can be nondimensionalized to these values without loss of generality. In
Figure 1a the average harvested power is shown as the mechanical damping parameter λ is varied, with be = 0.25.
While the response of the system with linear damping is well-known, in the presence of friction damping the
harvested power decays more slowly for small values of λ but then is reduced as compared to linear damping
for larger values of λ. In contrast the behavior for the cubic damping is reversed. It initially decays faster than
that for linear damping, but levels off and eventually decays slower that is observed for the system with linear
mechanical damping.
In Figure 1b, the average harvested power is shown as the electro-mechanical coupling coefficient be varies, with
λ = 0.20. While the systems with cubic and linear damping show similar levels of harvested power, the system
with frictional damping is able to harvest significantly more energy, and the optimal coupling coefficient is lower
than the other cases. Thus, the maximum harvested power and the optimal design parameters depend critically
on the form of the mechanical damping present in the energy harvesting system.
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Introduction
With continual interest in expanding the performance envelope of engineering systems, nonlinear components are increas-
ingly utilized in real-world applications. Mitigating the resonant vibrations of nonlinear structures is therefore becoming
a problem of great practical significance; it is the focus of the present study.

Nonlinear vibration absorbers, including the autoparametric vibration absorber [1], the nonlinear energy sink (NES)
[2] and other variants [3, 4], can absorb disturbances in wide ranges of frequencies due to their increased bandwidth.
However, the performance of existing nonlinear vibration absorbers is known to exhibit marked sensitivity to motion am-
plitudes. For instance, there exists a well-defined threshold of input energy below which no significant energy dissipation
can be induced in an NES [2].

This paper builds upon previous developments [5] to introduce a new nonlinear vibration absorber for mitigating the
vibrations around one problem nonlinear resonance. The absorber is termed the nonlinear tuned vibration absorber (NL-
TVA), because its nonlinear restoring force is determined according to the nonlinear restoring force of the host structure.
In other words, we propose to synthesize the absorber’s load-deflection characteristic so that the NLTVA can mitigate the
considered nonlinear resonance in wide ranges of motion amplitudes.

Furthermore, a nonlinear generalization of Den Hartog’s equal-peak method for determining the NLTVA parameters
is developed. The basic idea is to select the nonlinear coefficient of the absorber that ensures equal peaks in the nonlinear
receptance function for an as large as possible range of forcing amplitudes. We will show that this is only feasible when
the mathematical form of the NLTVA’s restoring force is carefully chosen, which justifies the proposed synthesis of the
absorber’s load-deflection curve.

Mathematical Model and Tuning Rule
The dynamics of a Duffing oscillator with an attached NLTVA is considered:

m1 ẍ1 + c1 ẋ1 + k1x1 + knl1x3
1 + c2(ẋ1 − ẋ2) + g(x1 − x2) = F cosωt

m2 ẍ2 + c2(ẋ2 − ẋ1) − g(x1 − x2) = 0 (1)

where x1(t) and x2(t) are the displacements of the primary system and of the NLTVA, respectively. The NLTVA is assumed
to have a generic smooth restoring force g (x1 − x2) with g(0) = 0. Adimensionalizing the equation of motion, the forcing
amplitude F disappears from the linear terms, which confirms that the linear part of the absorber is amplitude independent.
Furthermore, expanding g(x1 − x2) in Taylor series, it can be noted that F appears in the dimensionless coefficients of
the nonlinear term with exponent k − 1, where k is the order of the corresponding coefficient. This suggests that, if an
optimal set of absorber parameters is chosen for a specific value of F, variations of F will detune the nonlinear absorber,
unless the nonlinear coefficients of the primary system and of the absorber undergo a similar variation with F. This can
be achieved by selecting the same mathematical function for the absorber as that of the primary system. When coupled to
a Duffing oscillator, the NLTVA should therefore possess a linear (k2) and a cubic (knl2) spring.

1
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Figure 1: Frequency response of a Duffing oscillator with an attached NLTVA (a) and LTVA (b). For the computation
m1 = 1 kg, c1 = 0.002 N.s/m, k1 = 1 N/m, knl1 = 1 N/m3 and ε = 0.05. For the different curves F = 0.0115 N, F = 0.0258
N, F = 0.0365 N, F = 0.0577 N, and F = 0.0816 N.

In order to have an optimal behavior of the system at low forcing amplitudes, the well-known Den Hartog’s tuning
rule [6] for equal peaks, or alternatively the more precise formulas in [7], should be used. Then, based on a numerical
procedure, the optimal value of the coefficient of the nonlinear restoring force of the absorber knl2, which guarantees
equal peaks, can be obtained. Performing the optimization procedure for several values of the Duffing term and of the
forcing amplitude, it can be observed that the optimal value of knl2 does not depend on the amplitude and it is linear with
respect to variations of knl1. Through a regression of the dimensionless coefficients of the system, we obtain the formula
knl2 = 2ε2knl1/(1 + 4ε), where ε = m2/m1, which approximates with excellent precision the value obtained through a
numerical optimization procedure. This formula allows to easily tune the nonlinear spring restoring force and therefore
can be considered as a nonlinear extension of Den Hartog’s equal peaks rule.

Interestingly, the Duffing oscillator with an attached NLTVA exhibits linear-like dynamics in the investigated range of
forcing amplitude. As shown in Fig. 1 (a), the frequency response increases almost linearly with respect to the forcing
amplitude, in spite of the frequency shift of the resonant peaks. On the contrary, a linear tuned vibration absorber (LTVA)
is rapidly detuned and its performance is strongly dependent on forcing amplitude (Fig. 1 (b)). For any value of the
forcing amplitude in the investigated range, an important results is that the NLTVA has always better performance than
the LTVA, which confirms the effectiveness of the proposed device and tuning rule.
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[5] R. Viguié, G. Kerschen, J. Sound Vib. 326, (2009) 780-793.

[6] J.P. Den Hartog, Mechanical Vibrations (McGraw-Hill, New York 1934).

[7] T. Asami, O. Nishihara, J. Vib. Acoust. 125, (2003) 398-405.

2



5th Conference on Nonlinear Vibrations, Localization and Energy Transfer 

Istanbul, Turkey, July 2–4, 2014 

 

 

 

SESSION 2 



The Nonlinear Tuned Vibration Absorber, Part II:
Robustness and Sensitivity Analysis

T. Detroux, G. Habib, L. Masset and G. Kerschen

Space Structures and System Laboratory
Department of Aerospace and Mechanical Engineering
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Introduction
Nonlinear vibration absorbers, including the autoparametric vibration absorber [1], the nonlinear energy sink (NES) [2]
and other variants [3, 4], can absorb disturbances in wide ranges of frequencies due to their increased bandwidth. However,
the performance of existing nonlinear vibration absorbers is known to exhibit marked sensitivity to motion amplitudes.
For instance, there exists a well-defined threshold of input energy below which no significant energy dissipation can be
induced in an NES [2]. In the companion of the present paper [5], a Nonlinear Tuned Vibration Absorber (NLTVA) is
introduced to address these problems by extending Den Hartog’s linear tuning rule [6] to the nonlinear domain.

While excellent performance of the NLTVA is observed at low and moderate energy levels, some peculiar phenomena can
arise at higher energies, such as the apparition of detached resonance curves (DRCs), and quasiperiodic solutions; this is
the focus of the present study.

In order to identify the working range of the NLTVA in the presence of such adverse dynamics, the absorber’s robust-
ness has to be assessed. The analysis proposed in this study builds upon numerical methods such as the continuation
of codimension-1 bifurcations in parameter space, and the identification of the basins of attraction of the periodic and
quasiperiodic solutions. It is shown that some variations of the absorber parameters can improve its robustness without
deteriorating the performance significantly.

Computation of the adverse dynamics of the NLTVA
The dynamics of a Duffing oscillator with an attached NLTVA is considered:

m1 ẍ1 + c1 ẋ1 + k1x1 + knl1x3
1 + c2(ẋ1 − ẋ2) + g(x1 − x2) = F cosωt

m2 ẍ2 + c2(ẋ2 − ẋ1) − g(x1 − x2) = 0 (1)

where x1(t) and x2(t) are the displacements of the primary system and of the NLTVA, respectively. The application of
the tuning procedure proposed in [5] gives a restoring force for the NLTVA with both linear and cubic stiffness, i.e.,
g (x1 − x2) = k2 (x1 − x2) + knl2 (x1 − x2)3.

The system described in (1) exhibits linear-like dynamics in an important range of forcing amplitudes but, for high values
of F, some nonlinear phenomena can arise and possibly alter the performance of the NLTVA. As an illustration of the
adverse dynamics, Figure 1(a) depicts the frequency response of the Duffing oscillator for a forcing amplitude F = 0.15
N. One first observes that the main frequency response verifies Den Hartog’s criterion, with two resonance peaks of same
amplitude, which validates the effectiveness of the absorber. In this case, however, one can also detect the presence of
pairs of fold and Neimark-Sacker bifurcations, with stable quasiperiodic oscillations emanating from the latter through a
combination resonance. This can lead to higher oscillation amplitudes than what was expected from the study of the main
frequency response, but a careful investigation shows that they remain acceptable. For higher frequencies, one notices the
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Figure 1: Adverse dynamics and robustness analysis of the NLTVA. (a) Frequency response of the Duffing oscillator with
an attached NLTVA for F = 0.15 N. The solid and dashed lines represent stable and unstable solutions, respectively. The
dots represent the amplitude of stable quasiperiodic oscillations. Fold and Neimark-Sacker bifurcations are depicted with
circle and triangle markers, respectively. (b) Projection of the branches of fold bifurcations on the F-displacement plane.
The circle markers highlight fold bifurcations at the forcing amplitude of interest.

presence of a DRC with stable parts coexisting with periodic solutions of lower amplitude.

In order to assess the robustness of the NLTVA with respect to these phenomena, one of the methods we propose consists
in tracking fold bifurcations against the forcing parameters, F and ω. This is performed in Figure 1(b) which shows
the projection of branches of fold bifurcations in the F-displacement plane. Interestingly, together with the bifurcations
on the main frequency response, the branches indicate the presence of bifurcations on the DRC, which gives valuable
information about this isolated solution. From the upper turning point, one can identify the forcing amplitude at which the
DRC appears, one can then quantify its growth, and, from the lower turning point, one can eventually evaluate a forcing
amplitude at which it merges with the main frequency response. This forms the basis of the concept of safe, acceptable
and unsafe regions, for the performance of the NLTVA (see Figure 1(b)). The present work is based on the study of the
evolution of the regions for variations of the NLTVA parameters, and shows the compromises that can be made to enlarge
the working range of the NLTVA and enhance its practical applicability.
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Abstract: This study deals with the nonlinear response of an axially moving Euler-Bernoulli beam with clamped ends and one 

intermediate simple support. Examination of the traveling beam problem with these boundary conditions is the main contribution of this 

search. The support conditions mean that the beam is passing through two frictionless guides and one intermediate simple support placed 

between two guides. It is assumed that the beam has immovable boundaries at the outer ends. The assumption introduces nonlinearity 

because of stretching of neutral fibers. It is considered that the beam is axially moving along its length at a harmonically varying velocity 

about a constant mean value. In this paper variations at the velocities are assumed to be suitably weak. Differential equations governing the 

motion of the two sides of the beam are derived using variational formulation. A damping term is added into the equations. The method of 

multiple scales is applied to obtain approximate analytical solutions in this weakly nonlinear system. Natural frequencies are calculated in 

order to discuss effects of variations in flexural rigidity, mean translating speed and the location of intermediate support. Solvability 

condition for the case of principal parametric resonance is derived, amplitude-phase curves of steady-state responses and stability 

conditions are investigated. 

 

INTRODUCTION 

 
Magnetic tapes, power transmission belts, band saw, serpentine belts, robot arms and aerial cable tramways are 
engineering examples classified as axially moving continuum bodies [1-4]. Paper sheets, chain drives, fiber textiles, oil 
pipelines, wire and sheet metal processing systems such as straightening are the most common examples of axially 
moving continua. Transvers vibrations of moving continuous materials cause poor quality and failure. Therefore, the 
examination of these vibrations is of essential importance in design processes. Traveling bodies are modelled 
mathematically as either a traveling beam or string. There has been vast research into the vibration of axially moving 
continua. Wickert and Mote Jr. investigated the transverse vibration of axially moving beams and strings using an 
eigenfunction method. They also examined the vibrations of an axially moving string loaded suspended mass [5]. 
Pakdemirli and Öz computed the natural frequencies of axially moving beams with clamped ends in the super critical 
regime, and found the beam unstable at those velocities [6]. Pakdemirli and Nayfeh showed that the midplane stretching 
has a great effect on frequency-response and force-response [7]. Bağdatli et al. [8] investigated the nonlinear vibrations 
of beams supported at both ends and also had an intermediate support. An Euler-Bernoulli-type axially moving beam on 
multiple supports (simple support type) was considered [9]. Natural frequencies, modes and critical speeds of axially 
moving beams on different supports were analysed based on Timoshenko model by Tang et al. [10]. Amplitude and 
phase modulation relations were presented for different forcing and damping cases and 3:1 internal resonance cases 
were investigated between different modes of vibration [11]. Numerical examples were carried out to show the effects 
of variation in flexural rigidity, mean translating speed and the location of intermediate support on natural frequencies 
[12].  
 
The present paper investigates nonlinear response and stability of an axially moving beam. The Euler-Bernoulli-type 
beam passing through two frictionless guides is traveling with a slightly varying harmonic velocity and there is one 
simple support between the guides. The paper is organized as follows. The governing partial differential equations of 
motion and boundary conditions are derived using Hamilton’s Principle and solved using perturbation technique. Next, 
the natural frequencies are examined numerically for different bending rigidities, internal support locations and 
translating velocities. Finally, nonlinear response and stability of the beam is searched. 
 

PERTURBATION ANALYSIS and NUMERICAL EXAMPLES 

 
An Euler-Bernoulli-type uniform beam, with density ρ, cross-sectional area A, modulus of elasticity E, the moment of 
inertia of the beam’s cross section with respect to the neutral axis I, under an applied tension P, is moving axially at a 
slightly varying harmonic velocity v*. In Fig. 1, u�

∗ and u�
∗  are the left and the right side axial displacements of the beam 

respectively, and w�

∗ and w�

∗ are the left and the right side transverse displacements of the beam respectively. Here, t* is 
time, x�

∗ and x�
∗  are spatial variables. The Lagrangian for the beam is derived first. Then, the equations of motion are 

found through the Hamilton’s Principle. Non-dimensional variables and parameters are employed [8, 9, 12]. A solution 
will be carried out by using the method of multiple scales [13]. 

                                                
a) Corresponding author. Email: feridkostekci@hitit.edu.tr 



 

 
Fig. 1. Schematic model of a traveling beam passing through two fixed supports and one intermediate simple support. 

 
Numerical examples are conducted to show effects of variations in the mean axial speed and the location of the 
intermediate support. Fig. 2 illustrates the variation of the first and second natural frequencies with mean translating 
velocity for different internal support locations, η=0.1, 0.2, 0.3, 0.4, and 0.5, for the flexural stiffness constant vf=0.3.  
 

a)  b)  
Fig. 2. Natural frequency variations vs. axially traveling speeds for different locations (η) of intermediate support: (a) the 

first mode and (b) the second mode. 
 

CONCLUDING REMARKS 

 
This paper addresses numerically the dynamic response and stability conditions of an axially moving beam. Increasing 

flexural rigidity increases linear frequency but higher mean velocities decreases linear frequency.  Placing the 

intermediate support toward the middle of the beam also increases linear frequency.  
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A b s t r a c t : 
In this paper, nonlinear static and dynamic behavior of electrostatically actuated Timoshenko nano- beams 

are analytically investigated on the basis of the modified couple stress theory in the elastic range. The 

modified couple stress theory is a non-classic continuum theory capable to capture the small-scale size 

effects in the mechanical behavior of structures. The governing equations of motion and boundary conditions 

are derived on the basis of Hamilton principle. In this paper, considering bending deformations and angle of 

rotation of the cross sections, an Timoshenko beam is proposed on the basis of the modified couple stress 

theory. also in this study the effect of pull-in voltage, on static and dynamic behavior of the system are 

investigated. And the result indicates that the behavior of  the beam significantly depends on the pull-in 

voltage. the static and dynamic pull-in voltages gained for nano Timoshenko beam  using the modified 

couple stress theory are compared with those  gained  for nano Euler–Bernoulli beam using the modified 

couple stress theory[1]. And the results of this comparison  showed slight difference between them. 

 

Keywords: Timoshenko nano- beams, couple stress theory, bending deformations, angle of rotation of the 

cross sections, pull-in voltage 
 
Introduction:  

Thin (cantilever) beams have found important applications in micro- and nano-scale measurements such as 

those in biosensors and atomic force microscopes. In these applications the size effect is often observed(e.g., 

Lam et al(2003), McFarland and Colton (2005)). it is well-known that size-dependent behavior is an inherent 

property of materials which appears for a beam when the characteristic size such as thickness or diameter is 

close to the internal material length scale parameter[1] . Lacking an internal material length scale parameter, 

classical beam models cannot be used to interpret this microstructure - dependent size effect, therefore, need 

to be extended by using non classical continuum theories such as modified couple stress theory. This theory 

acceptably able to interpret the size-dependencies. Electrostatically actuated devices form a broad class of 

MEMS and NEMS devices due to their simplicity, as they require few mechanical components and small 

voltage levels for actuation [1] In such devices, a conductive flexible beam/plate is suspended over a ground 

plate and a potential difference is applied between them. As the microstructure is balanced between 

electrostatic attractive force and mechanical (elastic) restoring force, both electrostatic and elastic restoring 

force are increased when the electrostatic voltage increases. When the voltage reaches the critical value, pull-

in instability occurs. Pull-in is a situation at which the elastic restoring force can no longer balance the 

electrostatic force. Further increasing the voltage will cause the structure to have dramatic displacement 

jump causing structural collapse and failure[1]. The Timoshenko beam is a model for the study of behaviors 

of beams with less restrictive assumptions with respect to the Euler–Bernoulli beam . the Timoshenko beam 

is a complicated model with respect to the Euler–Bernoulli model, it possesses more capabilities and 

studying the behavior of beams based on the Timoshenko model gives closer results to the exact 

behavior[2].Therefore the objective of this paper is to develop a model for Electrostatically actuated 

Timoshenko nano beams using the minimum total potential energy principle and the concepts of the 

modified couple stress theory of Yang et al (2002).  
  
Results and Discussion 

In this study the cantilever aluminum nano-beams properties are b=200nm, h=150nm ,  100nm and L = 

8  and l = o.5  [1].  Fig. 2 depict equilibrium points for the Aluminum nano-beam versus applied 

voltage as a control parameter based on couple stress theory. As shown in this figure for given 

 there exist  two physically  fixed points. the first fixed point is a stable and the second 

one is an unstable. Therefore in Figs. 2 continues and dashed curvesre present the stable and unstable 

branches, respectively. In the aforementioned nano beam, by increasing the control parameter V the 

physically possible fixed points are closing to each other and in the pull-in voltage, they coincide in the 

bifurcation point. in this study static pull-in voltage is 10.60 V.  Fig. 3 show pull-in voltage versus the initial 



gap. As shown in these figure, with increasing the initial gap, pull-in voltage increases and the size effect of 

the nano-beam is also increased.                             

                                        
Fig. 2. Variation of the deflection of the nano-                              

beams  with applied DC voltage  based on couple    

stress theory 

  Fig. 3. pull-in voltage VS initial gap for 

   nano-beam 

 
 
Fig.4 showed  Primary frequency-response for the Duffing equation .As shown in these figure with 

increasing the  AC Voltage  in frequency – response curves the bending of the frequency – response curves 

increases. Fig. 5 show the time history of dimensionless gap for this nano-beam with actuating step voltage 

of 9. 4v. We note that the nano-beam oscillates with these voltages, and dose not collapse. But by a small 

increase of the actuating step voltage by only about 0.0 1V the nano-beam collapses. the calculated dynamic 

pull-in voltage based on couple stress theories is 9.41  The dynamic pull-in voltages are about 89% of the 

static pull-in voltages. 

                                           
       Fig. 4. Primary frequency-response for                                           Fig. 5. Time history of aluminum nano 

switch 

      the Duffing equation ,effect of AC voltage [3]                                  subjected to step-wise =9.4 v 
 
It is therefore concluded that the behavior of  the beam significantly depends on the pull-in voltage.  

Beams show unstable behavior when are  subjected to a fields created by potentials higher than pull-in 

voltage. 
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Abstract 

This paper presents a study on the gap dependent bifurcation 

behavior of an electrostatically-actuated nano-beam. The size-

dependent behavior of the beam was taken into account by 

applying the couple stress theory. Two small and large gap 

distance regimes have been considered in which the 

intermolecular vdW and Casimir forces are dominant, 

respectively. It has been shown that changing the gap size can 

affect the fundamental frequency of the beam. The bifurcation 

diagrams for small gap distance revealed that by changing the 

gap size, the number and type of the fixed points can change. 

However, for large gap regime, where the Casimir force is the 

dominant intermolecular force, changing the gap size does not 

affect the quality of the bifurcation behavior.  

Keywords: Nano-Beam, Electrostatic, Bifurcation, Fixed 

Point, Couple Stress 

 

1. Introduction 

Nowadays, with the rapid development in nano technology, 

the nano electro-mechanical systems (NEMS) have become 

one of the hottest research topics. High speed, accuracy and 

performance as well as low energy consumption have 

increased the possibility of substituting the nano technology 

with micro technology. Lin et al. [1] have studied the pull-in 

phenomena and calculated the pull-in voltage for a nano-

electromechanical switch with the assumption of one degree 

of freedom for a nano switch without taking into account the 

effect of vdW force. Dequesnes et al. [2] have calculated the 

pull-in voltage for carbon-nano-tube-based nano-

electromechanical switchs. Moeenfard et al [3] have 

investigated the static behavior of nano and micro-mirrors 

under the effects of Casimir force. Palasantzas et al [4] have 

obtained for two parallel gold surfaces about 18 nm gap 

distance for the crossover from vdW to Casimir regime, 

whereas Lambrecht and Reynaud [5] have predicted 

theoretically about 13 nm for the transition. 

On the other hand, many researches showed that in micro and 

nano scales the materials have strong size dependence in 

deformation behavior [6]. Size-dependent behavior is an 

inherent property of materials, which appears for a beam when 

the characteristic size such as thickness or diameter is close to 

the internal length-scale parameter of materials [6].  

In spite of the mentioned works about the electrostatically 

actuated nano-beams, there is no comprehensive study about 

their stability from bifurcation view point. In this paper, 

distributed as well as the lumped models of the nano-beam 

with nonlinear electrostatic actuation are introduced, 

considering the couple stress theory of elasticity. The vdW 

and Casimir forces are taken into account for small and large 

gap distances, respectively.  

 

2. Mathematical Modeling and Numerical Solution 

Figure 1 shows an electrostatically actuated fixed-fixed Euler-

Bernoulli nano-beam.  

 
Fig. 1. An electrostatically actuated fixed-fixed nano-beam 

The governing equation of motion considering the couple 

stress theory is obtained as following: 
4 2
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Clearly, when the couple stress effect is suppressed by letting 

l=0, the present model will reduce to the classical Euler-

Bernoulli beam model. In Eq. (1), extq  is considered as the 

sum of the nonlinear electrostatic, vdW and Casimir forces as 

following [7]:
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Due to the nonlinearity of the derived static equation, the 

solution is complicated and time consuming. We adopted the 

step-by-step linearization method (SSLM) [6], followed by 

Galerkin method to solve the obtained linear set of algebraic 

equations. Dynamic loading response can be obtained using 

Galerkin-based reduced order model [6]. To achieve a reduced 

order model, ( ),w x t may be approximated as: 

( ) ( )
1

, ( )
n

j j
j

w x t T t xφ
=

= ∑              

(3) 

 

By substituting Eq. (3) into Eq. (1) and multiplying by ( )i xφ  

as a weight function in Galerkin method and integrating the 

outcome from 0  to Lx = , the Galerkin based reduced order 

model is generated as: 

1 1

( ) ( )
n n

ij ij i
j j

j ijM T FT t K t
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3. Results and Discussion 

For analyzing the bifurcation behavior, a capacitive gold nano-

beam is considered with the specific geometries and material 



properties. It is considered two gap distance regimes which in 

the small distances,  0g 10 nm< , the only intermolecular force 

is vdW force whereas in large distances,  0g 15 nm> , the 

Casimir force is the only dominant intermolecular force [4].  

It can be seen in fig. 2. a. (  0g 6 nm= ) that for the applied 

voltages, there are two voltage regimes with two fixed-points 

and an interval with no fixed-point in the bifurcation diagram. 

Whiles, for  0g 10 nm= , instead of the regime with no fixed-

point, we have a regime with four fixed-points in the diagram 

(Fig. 2.b). Figure 3 illustrates the stability of these fixed 

points. In Fig. 3, it can be found that for V 0V= the first 

equilibrium position is a stable centre point and the second is 

an unstable saddle-node. There are two basins of attraction of 

stable centers and a basin of repulsion of unstable saddle node. 

Depends on the location of the initial condition the system can 

stable or unstable. Also, it must be mentioned that for a given 

voltage there is a singular point (SP) at the substrate position. 

 
a 

b 
Fig. 2. Variation of the center gap of the nano-beam with  

applied DC voltage for a.
 

 0g 6 nm=   b.  0g 10 nm=  

 

 

Fig. 3. Phase portrait of the nano-beam for  0g 6 nm=
 
and various initial 

conditions for  V=0V 

Figure 4 illustrates the bifurcation diagram of the nano-beam 

with  0g 15 nm= . It is understood that for all gaps above 

15 nm there are three fixed points before pull-in voltage. One 

of them is under the substrate which is physically impossible, 

but other two points are above the substrate. On the other 

hand, for voltages higher than pull-in voltage there is only one 

fixed point which is under the substrate.  

 
Fig. 4. Variation of the center gap of the nano-beam with applied DC voltage 

for  0g 15 nm=  

 

4. Conclusion 
In presented work, gap dependent bifurcation behavior of an 

electrostatically-actuated gold nano-beam was studied. Both 

distributed and lumped models were introduced to explain the 

nano-beam deformation considering couple stress theory. In 

bifurcation analysis, the following results were obtained: 

1. In both small and large gap regimes, for voltages lower 

than pull-in voltage, two stable and unstable fixed points 

appear on upper side of the beam. 

2. For small gap regime it can be found a voltage range in 

which no fixed point appears, whereas for large gaps there is 

not such a range. 

3. For large gap distances, for all voltages, there is one 

mathematically stable fixed point under substrate plate which 

is physically impossible, whereas for small gaps we have two 

voltage ranges; in first range there is not any fixed pint under 

the substrate and in second one two mathematically stable and 

unstable branches meet together in a saddle node. In this case 

the distance between two saddle nodes on upper and lower 

sides of the substrate plate varies with changing the gap size. 
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Flexural–Torsional Vibration and Stability Analysis of Multilayer Beams Subjected to Axial 

Load and End Moment – A Dynamic Finite Element Formulation 
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The coupled bending – torsion vibration and buckling of preloaded beams, subjected to axial load and 

end moment, is investigated. Based on the Euler-Bernoulli bending and St. Venant torsion beam theories, 

the differential equations governing coupled flexural–torsional vibrations and stability of a uniform, 

slender, isotropic, homogeneous and linearly elastic beam, undergoing linear harmonic vibration, are 

developed. Using the closed-form solutions of the uncoupled portions of the governing equations as the 

basis functions of approximation space, the Dynamic (frequency-dependent) Interpolation Functions are 

developed, which are then used in conjunction with the weighted residual method to develop the Dynamic 

Finite Element (DFE) of the system. Implementing the DFE in a MATLAB-based code, the resulting 

nonlinear Eigenvalue problem is then solved to determine the Eigensolutions of illustrative beam 

examples, subjected to various boundary conditions, and exhibiting geometric bending-torsion coupling. 

The validity and effectiveness of the proposed DFE are verified against the limited experimental data, and 

those obtained from analytical solution, conventional Finite Element Method (FEM), as well as 

commercial software (ANSYS
®
). A buckling analysis of the beam is also carried out to determine the 

critical buckling end moment and axial compressive force. The DFE produces exact results in absence of 

end moment, and exhibits a higher rate of convergence than the conventional FEM. 

 

1. Professor, Faculty of Aerospace Engineering, Ryerson University, Toronto, ON, Canada. 

shashem@ryerson.ca 

2. PhD Candidate, of Aerospace Engineering, Ryerson University, Toronto, ON, Canada. 

mtowliat@ryerson.ca 



5th Conference on Nonlinear Vibrations, Localization and Energy Transfer 

Istanbul, Turkey, July 2–4, 2014 

 

 

 

SESSION 3 



NV 2014, July 2-4, 2014, Istanbul, Turkey

Discrete breathers in forced chains of oscillators with cubic nonlinearities
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∗∗Faculty of Mechanical Engineering, Technion - Israel Institute of Technology, Haifa, Israel

Summary. The forced dynamics of chains of linearly coupled mechanical oscillators characterized by on site cubic nonlinearity is
investigated. The study aims to highlight the role played by the harmonic excitation on the nonlinear localised dynamics of the system.
Towards this goal, a map approach is employed in order to identify the chain nonlinear propagation regions under 1:1 resonance
conditions. Given the latter assumption, the governing second-order difference equation refers to a perturbation of the stationary
resonant response. Therefore, at first, the map dependence on the perturbation amplitude is neglected and the dependence of the
propagation regions as well as the ensuing period-1 orbits on the excitation amplitude is described. Discrete breathers (DB) obtained
as map homoclinic and heteroclinic orbits are compared with analytic approximations. Simple, soliton-like solutions are identified
with sequences of homoclinic or heteroclinic primary intersection points and their analytic approximation is based on the idea that the
nonlinearity is taken into account only in the central part of the breather whilst the tails are treated as linear excitations.

Equations of motion

A forced chain of linearly coupled nonlinear oscillators is studied by considering the dynamics governed by the following
equation of motion for the generic n-th oscillator

ün + un + u3n + c(2un − un−1 − un+1) = A cosωt (1)

in which c represents the linear coupling stiffness and the harmonic forcing amplitude and frequency are given byA and ω,
respectively. Time periodic solutions of equation (1) are sought for by assuming the harmonic solution un = an cos(ωt).
Equating coefficients of cos(ωt), thereby assuming 1:1 resonance conditions, gives

(1− ω2)an +
3

4
a3n + c(2an − an−1 − an+1) = A (2)

Equation (2) describes the motion of a perturbation of the underlying stationary resonant response; by substituting an =
γn + µ and 1− ω2 = σ, equation (2) leads to

σ(γn + µ) +
3

4
(γn + µ)3 + c(2γn − γn−1 − γn+1) = A (3)

The cubic nonlinearity allows to set

σµ+
3

4
µ3 = A (4)

Among the real roots µi, i= 1, . . . , 3 of (4), the ones corresponding to stable solutions are selected and substituted into
the map

αγn + β(γ3n + 3γ2nµ+ 3γnµ
2) + γn−1 + γn+1 = 0 (5)

where α = −σc −2 , β = − 3
4c . As known, the frequency dependent nonlinear map defined by (5) belongs to the class of

area preserving maps such that det(DT(γn, µ)) = 1, where DT is the Jacobian or tangent map with reciprocal eigenvalues
[1]. By setting γn+1 = xn+1 and γn = yn+1 and exploiting the map symmetry lines, the period-1 orbits can also be
obtained as y = 1

2x(α+ β(x2 + 3xµ+ 3µ2). As expected, the period-1 orbits coincide with the saddle-node boundaries
(blue curves in Figure 1).

Figure 1: Propagation regions on the σ − µ (left) and σ −A (right) planes for c = 1.
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Figure 2: Invariant manifolds scenarios for increasing forcing amplitude level; stable (blue) and unstable (red) manifolds and fixed
points for σ = −4.7: a) µ = 0.0 (A = 0.0), point A in Figure 1; b) µ = 0.2 (A = −0.93), point B in Figure 1; c) µ = 0.8 (A =
−3.34), point C in Figure 1.

Nonlinear propagation regions and discrete breathers

By neglecting γn, the excitation effect is retained by the map through dependence on µ, therefore the propagation regions
boundaries can be easily identified by |tr(DT)| = 2, leading to the nonlinear propagation regions shown on the σ−µ and
on the plane σ−A planes (Figure 1). Interestingly enough, the dependence on µ (Figure 1, left) of the forced propagation
regions coincides with that of the unforced ones with respect to the response amplitude. The presence of the forcing term
alters the position of the fixed points along the symmetry line x = y. In essence, as the forcing amplitude level increases,
the stable fixed points (blue dots in Figure 2) are no longer symmetric with respect to x = −y. Therefore for points
lying outside the bounded regions (e.g. points A,B in Figure 1), the fixed points (0, 0) are hyperbolic and the invariant
manifolds can emanate from them (see Figure 2a,b). Differently, by entering the bounded region (e.g. point C in Figure
1), the fixed points (0, 0) become elliptic and the unstable ones move along the main symmetry line x = y (see Figure
2c). Exact analytical approaches for the analysis of DB are seldom available [2]. In this work, following [3, 1], discrete
breathers are identified with sequences of homoclinic intersection points of the mapping (Figure 3a) corresponding to the
DB centered in n = 0 shown in Figure 3b. Then, the DB map-based analysis is compared with an analytic approach based
on a single particle DB approximation (Figure 3c) and harmonic balance method [4]. The prediction of DB existence
zone in the space of parameters provided by the two approaches is eventually discussed.

Figure 3: Stable (blue) and unstable (red) manifolds and fixed points for σ = −4.7, µ = 0.2 and one homoclinic orbit (black); a)
global view; b) discrete breather corresponding to the homoclinic orbit of (0, 0); c) single particle discrete breather approximation.
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Microscopic approach to shear localization and plasticity in amorphous solids 
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 This presentation is devoted to a review of recent achievements in the field of microscopic 

foundations of plasticity in amorphous solids. It is well – known that traditional approaches based on 

dislocations and their motion fail in such systems due to the lack of long-range order. As a result, it is 

very difficult to define unambiguously the structural defects, and even less than that – to figure out any 

mechanisms for their motion. This difficulty caused many theoretical developments based on 

phenomenological definitions of local structural defects arising in the process of plastic deformation. 

Perhaps, most well-known example of such phenomenological concepts is that of shear transfer zones. 

  I am going to describe recent ab initio approach to the problem based on direct study of a 

potential relief related to the microstructure of the glass. Plastic events are thus identified with changes 

of the structure of this relief. This somewhat vague definition can be made rigorous by consideration of 

Hessian matrix of the potential energy as a function of the particle’s coordinates. Plastic event may be 

identified with nullification of one of eigenvalues of this Hessian matrix through saddle-node bifurcation. 

It can be shown that the eigenfunction corresponding to this eigenvalue is generically localized on 

relatively small number of particles. Therefore, the idea of appearance of local structural defects is 

justified; however, the size of these localization zones is essentially larger than standard parameters 

used in the phenomenological theories. 

 The basic notion of the structural defect allows consideration of an interaction between the 

defects, preferable configurations and structural formation. These ideas allow explanation of some 

macroscopic phenomena, like formation of shear bands, nonlinear elasticity, and some others. In 

particular, the microscopic consideration allows one to offer the theoretical explanation for observed 

asymmetry of shear bands orientation for uniaxial tension and compression, and to explain why 

experimentally observed angle between the shear band and the direction of deformation almost never 

exceeds 60
0
.  This phenomenon is illustrated in Figure 1. 



 

 

Figure 1. The shear band that occurs in a two-dimensional amorphous solid upon uniaxial (a) 

compression and (b) extension. 

 



Discrete Breathers in 2D Chains with Vibro-Impact

Itay Grinberg∗and Oleg V. Gendelman†
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A widely studied topic in recent years is localization in nonlinear discrete lattice or oscillator arrays. Such localization may
appear even in perfectly homogeneous systems. It is commonly referred to as Discrete Breathers (DBs), Intrinsic Localized
Modes (ILM) or Discrete Solitons in lattices or oscillatory arrays.

The discussed system includes the strongest type of nonlinearity � vibroimpact (VI). It consistes of an array of linear chains
connected by linear springs where each mass has two barriers bounding its movement such that when interacting there's impact
� elastic or inelastic depending on the model. The forced model with inelastic impact is presented in �g. 1.

Fig. 1: System schematics.

Based on works by Gendelman and Manevich[2, 3] an exact solution of a symmetric DB is developed for the Hamiltonian
model, and more importantly, a forced-damped model. Additionally, the zone of existence is determined and it's stability is
examined via Floquet multipliers[4], i.e. eigenvalues of the Monodromy matrix that is described explicitly for an approximate
�nite system, hence the Floquet multipliers are not extracted numerically from the mapping as is usually the case but are derived
directly from the Monodromy matrix. It is important to note that since both models are VI models, producing the Monodromy
matrix is not a simple task and must be done separating the linear regime from the instance of the impact where one must use
a saltation matrix [1].

The equations of motion for the system in between the impacts is as follows for the forced-damped model:

v̈n,m + k1 (2vn,m − vn−1,m − vn+1,m) + k2 (2vn,m − vn,m−1 − vn,m+1) = F (t) (1)

where F (t) is a periodic anti-symmetric excitation with period 2π, k1 is sti�ness of the linear chain and k2 is the sti�ness of
the connection between the chains.. Using a simple transformation and seeking a single-site symmetric (which is periodic) the
equations of motion can be written as follows:

ün,m + k1 (2un,m − un−1,m − un+1,m) + k2 (2un,m − un,m−1 − un,m+1) =
= 2pδm0δn0

∑∞
j=−∞ (δ ((t− φ) + π (2j + 1))− δ ((t− φ) + 2jπ))

(2)

Note that after the transformation the equations are conservative and p is the impluse of the impact.
Using an ansatz similiar to that used in [2] based on the the fourier transform of the impacts the following solution is derived:

vn,m =

∞∑
l=0

u0,0,lf
|n|g|m| cos ((2l + 1) (t− φ)) + h (t) (3)

where ḧ (t) = F (t).

∗gitay@technion.ac.il
†ovgend@technion.ac.il
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f =
(2k1−(2l+1)2)+(2l+1)

√
(2l+1)2−4k1

2k1
g =

(2k2−(2l+1)2)+(2l+1)
√

(2l+1)2−4k2
2k2

g =
(2k2−(2l+1)2)+(2l+1)

√
(2l+1)2−4k2

2k2

u0,0,l =
4p

π(2l+1)
(√

(2l+1)2−4k1+
√

(2l+1)2−4k2−(2l+1)
)

(4)

The parameter p and the functionh are then determined via:

pχ+ h (φ) = 1 ḣ (φ) = 1−e
1+ep (5)

where e is the coe�cient of restitution of the impacts and χ =
∑∞
l=0

4

π(2l+1)
(√

(2l+1)2−4k1+
√

(2l+1)2−4k2−(2l+1)
) .

Numerical veri�cation on an approximate model is presented in �g. 2.
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Fig. 2: Displacements and oscillation amplitudes for k1 = 0.06, k2 = 0.02, a = 0.0001 and e = 1− 10−16

The stability analysis revealed two mechanisms of loss of stability, one via Neimark-Sacker (Hopf) bifurcation and the later
via pitchfork bifurcation which corresponds to appearance of two stable asymmetric DBs in the single chain model[2]. Example
of the map of loss of stability is shown in �g. 3 where the upper loss of stability is the pitchfork bifurcation and the lower loss
of stability is the Neimark-Sacker bifurcation.
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Fig. 3: Stability of the zone of existence for a = 0.68, e = 0.8. Gray denotes unstable region whereas white is stable.
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Introduction

In many modeling problems, numerical bifurcation studies are an indispensable tool for obtaining a qualita-
tive (and quantitative) understanding of the types of dynamics that arise, and when they can be observed
experimentally. To perform such a study, we employ a combination of numerical continuation techniques,
which locate where a desired type of behavior exists, linearized stability analysis, which determines if the
resulting solutions persist in the face of perturbations, and unstable manifold computations, which provide
some guidance on locating the new behaviors that arise when the branch becomes unstable. Furthermore,
the knowledge obtained from these components is useful when subsequently conducting “systems level” tasks
such as optimization or fixed point stabilization.

One set of solutions where these techniques can be applied are the “dark breather” solutions in an
engineered granular chain (EGC). Dark breathers are a subset of “discrete breathers” [1] that have received
far less attention than their “bright” counterparts. However, such structures naturally arise in engineered
granular chains, which consist of closely packed arrays of particles [2] that interact elastically, and are
relevant in numerous applications such as shock and energy absorbing layers [3], acoustic lenses [4], and sound
scramblers [5]. Therefore, understanding the dynamics of such breathers is crucial in future applications of
EGCs.

For a particular experimentally realized EGC, it is possible to identify an effective set of governing
equations [6] that can be used to compute bifurcation diagrams. The purpose of our current work is to develop
data driven algorithms and methods that perform the same task by wrapping equation-free algorithms around
“black box” numerical simulators (and even, possibly, physical experiments). In this way, we could compute
the needed solution branches as well as their stability and bifurcations without the need to develop explicit
governing equations.

Experimental and Computational Tools

To perform a data driven bifurcation study, we require two sets of tools: experimental tools that generate
data, and computational tools that analyze and exploit it. The experimental tool needed to accomplish this
is the physical experiment shown in Fig. 1a, which consists of a 21-bead granular chain with piezoelectric
actuators on both ends –to provide the forcing– and a laser Doppler vibrometer to non-intrusively measure
the velocity of the beads that comprise the chain. Each bead in the chain is a chrome steel sphere (with
radius R = 9.53 mm, Young’s modulus E = 200 GPa, Poisson ratio ν = 0.3, and mass M = 28.2 g). The
actuation frequency fb and amplitude a can be controlled experimentally; typical values of fb ∈ [5, 7.5] kHz
and a = 0.2 µm. In this parameter regime, dark breathers (or multi-breathers) with 1-, 3-, 5- and more
spatial dips appear depending upon the precise values of fb chosen. As a result, the experimental setup
enables us to “select” a specific type of dark breather (by tuning the forcing frequency) and measure the
state of the resulting system. To test our computational tools, we instead work with a “black box” numerical
code that has been specifically calibrated to match the physical system described above [6]; the algorithms
described below could be just as easily applied to a physical experiment, but this allows us to avoid the
non-trivial step of experimentally specifying initial conditions.

The computational tools are a combination of the Equation–Free (EF) paradigm [7] developed by a subset
of the present authors and the so called “matrix free” methods, which were originally designed to solve the
linear system A~x = ~b using only matrix–vector products (i.e., A~x) rather than obtaining and decomposing
the full matrix [8]. These matrix–vector products can also be estimated by “probing” the system with
judiciously initialized perturbations without the need for explicit governing equations, which makes them
ideal for use with black box systems. The three computational tasks that comprise our bifurcation study are
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Figure 1: (a) Schematic and photograph of the experimental setup [6]. (b) The bifurcation diagram obtained
using the EF framework with matrix-free linear algebra. The blue regions are stable, and the red regions are
unstable as defined by Ref. [6]. The markers denote the location of different bifurcation points: cyan diamonds
denote pitchfork bifurcations, green squares denote period-doubling bifurcations, and black asterisks denote
Neimark–Sacker bifurcations.

accomplished with Newton–GMRES [8], the Implicitly Restarted Arnoldi Method (IRAM) [9], and manifold
continuation techniques [10]. Each of these algorithms has been implemented in a matrix-free fashion and is
suitable for use in the EF framework.

Results and Conclusions

We generated the bifurcation diagram shown in Fig. 1b using the computational tools described above on
our black box systems. This study reveals that this conceptually simple EGC is a true playground for
nonlinear dynamics, and contains numerous pitchfork, period-doubling, and Neimark–Sacker bifurcations all
on one single, “snaking” branch of solutions. This single solution branch connects the dark-breathers with
the n-dip multi-breathers that were observed at lower forcing frequencies, which is in agreement with the
“equation aware” study performed in Ref. [6]. Note in that figure, we only plot half the total number of
Neimark–Sacker bifurcations to avoid obscuring the main branch.

In addition to the main solution branch, there are numerous secondary branches including branches with
higher period, which were generated either by a period-doubling bifurcation or within an Arnold tongue,
(temporally) quasi-periodic solutions, which appear as invariant circles on the stroboscopic map and were
generated by supercritical Neimark–Sacker bifurcations, and branches that break symmetry and were gener-
ated by pitchfork bifurcations. Each of these secondary branches has its own and often complex bifurcation
substructure and often generates tertiary branches with yet more complexity. There are even hints of chaotic
behavior that can be observed at higher forcing frequencies. A non-exhaustive study of the subsequent ter-
tiary branches shows that they too have a complex structure and additional bifurcations; however, these
branches are often only stable for short intervals (if they are stable at all). As such, we conjecture that they
will not frequently appear experimentally unless the system is specifically modified to stabilize them.

Ultimately, EF computations with the assistance of matrix-free linear algebra are an effective suite of
computational tools for conducting bifurcation studies on “black box” systems, and there is excellent agree-
ment between the bifurcation diagram computed here and the one obtained with AUTO [11]. Although the
black box in this example was a numerical code, these methods could in principle be applied to experiments
if the experimental initial conditions could be specified at will. In addition to their engineering applications,
EGCs are valuable as a testbed for new data driven algorithms and procedures because they contain highly
nontrivial dynamics and are approachable experimentally. As such, they will be useful in developing new
“seamless” algorithms for the EF framework that are more compatible with experiments where the state of
the system cannot easily be prescribed in detail.
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Basins of attraction of coupled nonlinear resonators in periodic lattices
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Summary
Collective dynamics in periodic lattices of coupled nonlinear Duffing-Van Der Pol oscillators is modeled and investigated
under simultaneous external and parametric resonances. The resonators are coupled with linear and nonlinear springs.
Numerical simulations have been performed in the case of two coupled oscillators for which the basins of attraction have
been analyzed in the multistability domain in order to check the efficiency of the multimode branches.

Introduction
Interest in the nonlinear dynamics of periodic nonlinear lattices has grown rapidly over the last few years. Actually, it
exists a practical need to understand nonlinearities and functionalize them in order to efficiently exploit the collective
nonlinear dynamics of smart structures. For instance, Lifshitz et al. [1] investigated the dynamic behavior of an array of
N coupled micro-beams using a discrete model. Manktelow et al. [2] focused on the interaction of wave propagation in a
cubically nonlinear mono-atomic chain, while Bitar et al. [3] investigated the bifurcation and enery transfers in periodic
lattices of coupled nonlinear Duffing-Van Der Pol oscillators under an external excitation. Particularly, the basins of at-
traction can be used for qualitative as well as quantitative analysis of the collective dynamics robustness. In a nonlinear
nanomechanical resonator, Kozinsky et al. [4] experimentally probe the basins of attraction of two fixed points. Moreover,
Sliwa et al. [5] investigated the basins of attraction of two coupled Kerr oscillators. Furthermore, Ruzziconi et al. [6]
studied frequency response curves, behavior charts and attractor-basins phase portraits of a considered NEMS constituted
by an electrically actuated carbon nanotube. In this context, an array of coupled Duffing-Van Der Pol oscillators under
simultaneous primary and parametric resonances is developed and the distribution of the basins of attractions is analyzed
for multistable solutions including single and multi-modes branches.

Model and basin of attraction analysis
The proposed model presents an array of a finite coupled Duffing-Van Der Pol oscillators, under simultaneous external
and parametric excitations. The scaled equation of motion (EOM) governing the behavior of the nth resonator can be
written as:

ün + ε
ω0

Q
u̇n + ω2

0un + εh cos[2(ω0 + εΩ)t]un +
1

2
εd(−un+1 + 2un − un−1)

+α[(un − un+1)3 + (un − un−1)3] + ηu2nu̇n = ε
3
2 g cos[(ω0 + εΩ)t], (1)

where un is the displacement of the nth oscillator, with fixed boundary conditions u0 = uN+1 = 0, ω0 and Ω are
respectively the natural frequency and the detuning parameter. Q is the quality fractor, d represents the linear coupling,
α is the cubic spring constant and η represents the Van Der Pol damping coefficient, h and g are parametric and external
excitation amplitudes respectively, and ε is a small dimensionless parameter.

The method of multiple time scales was used to solve the coupled EOM analytically. With the expectation that the
motion of the resonator far from its equilibrium will be on the order of ε

1
2 , we try a solution of the form:

un(t) = ε
1
2

N∑
m=1

(Am(t) sin(
nmπ

N + 1
)eiω0t + c.c.) + ε

3
2u(1)n (t) + · · · n = 1, ..., N, (2)

where T = εt is a slow time variable. The slowly varying amplitudes Am(T ) = (am(T ) + ibm(T ))eiω0t obeys to 2N
differential equations. In Figure 1, we display the response amplitude of the first oscillator, in function of the detuning
parameter of two coupled oscillators, for specific design parameters. Remarkably, there are frequency bands where four
stable solutions can exist. The multivaluedness of the response curves due to the nonlinearity has a significance from the
physical point of view because it leads to jump phenomena wich are localized at the bifurcation points.

The basins of attraction are numerically plotted to investigate the trajectories of the system response and the prob-
ability for which the system follows either the resonant or non-resonant, for single or double mode branches. Although,
they are usually plotted in the phase plane (un, u̇n), we chose to represent them in the Nyquist plane. Several numerical
integrations of differential equations have been performed for a specific domain of initial conditions, in order to localize
the maximum amplitude |A1|2 in the steady-state domain. As shown in Figure 1, |A1|2 takes one of four values, depend-
ing in the chosen initial conditions which allows for the representation of the corresponding basins of attraction.

Conclusion
The collective nonlinear dynamics of periodic nonlinear lattices was modeled for specific discrete systems of coupled
Duffing-VDP oscillators under simultaneous primary and parametric excitations. The case of two coupled oscillators was
investigated for a specific design parameters for which, the basins of attraction have been analyzed in the multistability
domain for two coupled nonlinear oscillators to quantitatively asses the efficiency and reliabiliy of additional branches
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when used in energy harvesting applications.
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Figure 1: Response intensity as a function of the detuning parameter Ω for the first oscillator, where SMRB1 and SMRB2 are Single
Mode Resonant Branches due respectively to primary and parametric resonances, SMNRB and DMNRB are respectively Single and
Double Mode Non Resonant Branches.
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Figure 2: Variation of the basins of attraction in the Nyquist plane (a1, b1), with respect to the inital condition a2 for fixed detuning
parameter Ω = 36 and b2 = 0. Magenta, purple, blue and cyan colors indicate respectively SMRB1, SMRB2, SMNRB and DMNRB.
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The concept of nonlinear modes is well-known for its ability to extract the energy-
dependent vibration signature of nonlinear dynamical systems in terms of natural fre-
quencies and vibration deflection shapes. Modal analysis also facilitates the qualitative
understanding of nonlinear phenomena such as the localization of vibration energy, the
change of stability of modes and internal resonances at high energies. It can generally
be stated that in contrast to the linear case, modal analysis is far less established in the
nonlinear case. An important reason for this is possibly that most approaches are strictly
limited in their scope of applicability. In particular, fundamental research in the field
of nonlinear modes focused primarily on conservative systems with low-order polynomial
nonlinearities. This clearly limits their usefulness to investigate (dissipative) vibration
control mechanisms and strongly nonlinear or even non-smooth forces induced e. g. by
contact interactions and phase transformations.
The presented method is based on the periodic motion conception of nonlinear modes
[2]. An artificial mass-proportional damping term is introduced in order to compensate
the non-conservative forces and thus to make the motion periodic. Conventional methods
such as the shooting and the harmonic balance method can be utilized for the direct
computation of the energy-dependent natural frequency, modal damping ratio and the vi-
bration deflection shape. The treatment of quite generic nonlinear, including non-smooth
forces is therefore straight-forward. The method is currently limited to the investigation
of isolated resonances, i. e. to the dynamic regime where internal resonances are absent.
The capabilities of the approach are demonstrated for a mechanical system with SMM
attachments [1], cf. figure 1. The dissipative character of the shape memory effect is de-
scribed by a piecewise linear hysteresis. The proposed method is employed for the assess-
ment of the vibration damping performance of the assembly. The amplitude-dependent
natural frequency and modal damping ratio of the considered system are illustrated in fig-
ure 2. In contrast to alternative methods for damping assessment, the proposed approach
explicitly accounts for the variation of the vibration deflection shape with amplitude
and the possible multi-harmonic vibration content, which generally leads to an improved



Malte Krack, Lars Panning-von Scheidt and Jörg Wallaschek

Martensite
(M)

A M�

M A�

A M�

M A�Martensite
(M)

Austenite
(A)

base structure

SMAs

fe(t)

Figure 1: Passive vibration damping using shape memory materials (SMMs) (a) pseudoe-
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accuracy of the results. If one is interested in reducing near-resonant vibrations, the pro-
posed computational method gives directly rise to relevant measures that characterize the
autonomous vibration behavior of structures damped with SMMs. These modal charac-
teristics can also be utilized to predict the vibration behavior under various operation
conditions (model reduction) [2, 3]. The approach is therefore regarded as particularly
useful for the design of nonlinear vibration control mechanisms.
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Delayed Feedback Control of Nonlinear Surge Response of Multi-point Mooring System under 
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Extended Abstract 

The complex behaviour of nonlinear system such as periodic, aperiodic and chaotic solutions is 

generally dealt with active vibration control based on time delayed feedback control. The delay in the 

feedback control is expected for several reasons or sometimes introduced intentionally for obtaining 

desired performance of nonlinear dynamical systems. Generally, the presence of delay either natural 

or intentional results in the more complex behaviour of the dynamic system. The classical control 

theory limited to linear system cannot be applied for the time delay control of nonlinear system which 

is essentially in the form of nonlinear delay differential equations.  

In the recent past, time-delayed feedback control has been successfully used to control vibrations and 

stability of various linear and nonlinear systemsusing various analytical, semi-analytical and 

numerical methods. Application of these techniques cover a wide range of problems including 

standard problem of van-der-Pol Oscillator, Duffing Oscillator, Mathieu’s Equation etc. The present 

study is motivated by the need for a better semi-analytical prediction of complex periodic (ultra-

subharmonic) via incremental harmonic balance method (IHB), as previous theoretical analysis 

focused on weakly nonlinear regimes (via both multiple-scales asymptotic (1, 2, 3, 4, 5, 6, 7) and a 

straight forward harmonic balance analysis (8). This apart, these methods are mostly suitable for 

systems with small amplitude of excitation. On the other hand, numerical integration techniques are 

able to solve strongly nonlinear problems and gives both transient and steady-state responses for 

given initial conditions. There are some distinct drawbacks of these methods. It is highly expensive 

for stiff equations and longer period responses. Also, point-to-point integration makes it inefficient for 

parametric studies. Further, NI cannot generally capture unstable solutions, which are necessary for 

better understanding of the system behaviour, particularly the bifurcation behaviour of the nonlinear 

system. If the system or the feedback control law (which will be developed and introduced in the 

feedback path) is strongly non-linear, the method of incremental harmonic balance along with 

continuation technique, a systematic computer method seems to be useful (9, 10 & 11) .Therefore, in 

the present study, a comprehensive numerical schemes based on IHBC is developed to analyze all 

possible stationary resonances of nonlinear dynamical systems under non-linear time-delayed 

feedback.  

With this back ground, time delay feedback control of nonlinear surge response behaviour of 

multipoint mooring system under harmonic wave is investigated by incremental harmonic balance 

method along with continuation technique (IHBC). The two-point mooring system has fairly strong 



stiffness nonlinearity and is, therefore, expected to show fundamental and subharmonic resonances. 

The nonlinearity of the restoring force is represented by a cubic polynomial and the forcing function 

on the mooring system is idealized as monoharmonic excitation. The period-one as well as the 

subharmonic solutions obtained by the incremental harmonic balance IHB method are compared with 

the solutions obtained by the numerical integration of the equation of motion. 

The objective of this paper is to study the amenability of IHBC Technique for analysis of time delay 

feedback control of two point mooring system and study its efficiency in obtaining suppression of 

various fundamental and subharmonic resonances present in the strongly nonlinear multi point 

mooring system with delayed feedback. Appreciable reductions in the peak of resonance curves 

obtained with appropriate choices of the feedback gains and the time-delay from the viewpoint of 

vibration control are also discussed. The control of complex nonlinear responses such as periodic, 

aperiodic and chaotic responses present in the strongly nonlinear dynamical system is successfully 

investigated. 
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We study experimentally pass and stop-bands, and propagating breathers in ordered granular 

chains composed of steel beads embedded in elastic matrix, subject to single point harmonic 

excitation [1]. We consider three different matrix materials with varying stiffness and 

damping properties: PDMS, polyurethane and geopolymer. Moreover, we experimentally test 

single and coupled granular chains over varying frequency and amplitude ranges. In all cases 

we experimentally prove the existence of low-frequency acoustic pass-bands where the 

embedded granular chains exhibit strongly nonlinear dynamics. In this case the applied 

harmonic excitation generates discrete pulses in the granular metamaterial due to negligible 

effective compression. In these low-frequency regimes the granular interactions in the time 

series of the transmitted pulses can be clearly identified. These pulses are highly tunable with 

frequency and force intensity. At high-frequencies stop-bands are realized, characterized by 

strongly localized standing waves in the acoustic metamaterial. In this case the granular 

medium is strongly compressed and its response is almost linear. This leads to complete 

elimination (filtering) of transmitted waves, and the embedded granular medium oscillates as a 

low-dimensional system of spring-mass coupled oscillators. Such strongly attenuating 

dynamic response is important in applications where shock isolation is desired. The more 

interesting dynamic regime is realized at intermediate frequency ranges. In these ranges we 

conclusively prove the propagation of breathers in the embedded granular chains. These are 

oscillatory wavetrains with localized envelopes, and can be robustly and predictably excited in 

all three granular metamaterials tested in our study. We investigate the effects of matrix 

properties and of the distance between coupled granular chains on the propagation of these 

breathers, and study energy exchanges between coupled embedded chains in this strongly 

nonlinear regime. To our knowledge this is the first experimental demonstration of 

propagating breathers in a practical, highly nonlinear acoustic granular metamaterial. 

Applications of these results will be discussed. 

 

    

Figure 1. Experimental fixture 

  



 

 
 

Figure 2. Pass band dynamics in a single granular chain of 11 steel beads embedded in 

PDMS matrix under relatively high amplitude excitation at 100 Hz: Force transmitted at the 

end of the chain. 

 

 

 

 
 

Figure 3. Propagating breathers two coupled granular chains of 11 steel beads embedded in 

polyurethane matrix at 500 Hz: Velocity of the last bead of the excited chain and force 

transmitted at the end of the unexcited chain. 
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Most real-life structures include inherent nonlinearities, and their responses (such as unstable motions, 
limit cycles, bifurcations and chaotic motions) are of significant interest to researchers. The harmonic 
balance method is a powerful tool to approximate the dynamic response in a more tractable form since it 
converts the nonlinear ordinary differential equations into a set of manageable nonlinear algebraic 
equations. 
 
The goal of this study is to apply the multi-term harmonic balance method to a mechanical oscillator 
with clearance nonlinearity as depicted in Fig. 1. As shown in Fig. 1, a mass m moves with x(t) due to 
the external excitation force F(t), and two sets of elastic (k) and dissipative (c) elements are located on 
both sides of m with a backlash (clearance) of b. Elements of gear rattle in vehicles can be simulated 
using this model. The chief objective of the current study is to estimate the nonlinear frequency 
responses using the multi-term harmonic balance method. 

 
Figure 1. Single degree of freedom model with clearance nonlinearity. 
 
The governing equation of the system of Fig. 1 is given with    g(x, !x)  and h(x) as dissipative and elastic 
functions, respectively, 

   m!!x + cg x, !x( ) + kh x( ) = F t( ) .                 (1) 
The piecewise linear functions are described as: 

   

g x, !x( ) =
!x
0
!x

⎧
⎨
⎪

⎩⎪
;  

  

h x( ) =
x − b

0
x + b

⎧
⎨
⎪

⎩⎪

x > b
−b ≤ x ≤ b

x < −b
.     (2a, b) 

The excitation force F(t) is assumed to be periodic of order M with a constant mean value, i.e. 

  
F(t) = F0 + Fm sin(mωt)

m=1

M∑ . For the multi-term harmonic balance solution, Eq. (1) is first transformed 
from t domain to spatial θ domain by assuming θ = ωt with  θ ∈[0,2π ) . Second, the Fourier series 

expansion is assumed for the solution of Eq. (1), as: 
  
x(θ ) = a0 + a2n−1 sin(nθ )+ a2n cos(nθ )

n=1

∞∑ . Third, 

b b 

m 

k k 

c c 

x 

F(t) 



the discrete Fourier transform operator (Γ) and differential operator (D) are defined, and the nonlinear 
elastic and dissipative functions along with x(θ) are discretized as   g(x, ′x ) = Γγ , h(x) = Γη and x(θ) = 
Γa, where  ′( ) = d( ) d(θ ) . Finally Eq. (1) is rewritten as follows. 

  mω
2Γ D2a + cωΓγ + kΓη = ΓQ .                (3) 

Equation (3) can now be transformed to the frequency domain by pre-multiplying it with the pseudo-
inverse of Γ (  Γ

+ = (Γ TΓ )−1Γ T ), and the residue equation is defined as: 

  R = mω 2D2a + cωγ + kη −Q .                 (4) 
Equation (4) represents a set of nonlinear algebraic equations; therefore it is iteratively solved using the 
Newton-Raphson method. In the solution, the pseudo arc-length continuation method is also applied in 
order to successfully track the nonlinear frequency response curve, especially in the vicinity of turning 
points [1, 2]. The calculated nonlinear frequency response curve is shown in Fig. 2 in terms of the 
maximum normalized x  amplitudes, where x x b= . First, observe multiple peaks due to the multiple 
orders in F(t). Peaks are well separated at the higher frequency range; however, they are closer in the 
lower frequency range. Second, higher orders of F(t) do not excite the nonlinearity due to their lower 
amplitudes, hence the response is linear in the lower frequency region. The bending of the resonant 
peaks is clearly seen at first and second orders. This demonstrates the amplitude dependent response of a 
nonlinear system. 
 

 
Figure 2. Nonlinear frequency response of the model of Fig. 1. 
 
In order to better observe the interactions between adjacent peaks, the DC value of the F(t) (F0) is 
halved and the calculated nonlinear frequency response, in the lower frequency regime only, is displayed 
in Figure 3. An isolated branch emerges over the lower frequency range, which is away from the peaks 
of Fig. 2. It is believed that this branching is due to interactions between adjacent orders. Furthermore, 
the frequency response curve follows an interesting path as shown in the zoomed view of Fig. 3. 
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Figure 3. Isolated branch over lower frequency region. 
 
In summary, this study examines the application of multi-term harmonic balance method for a system 
with backlash nonlinearity. It is shown that even a single degree of freedom system with a discontinuous 
nonlinearity can exhibit a wide class of dynamic responses. Furthermore, the stability of the solutions is 
also checked using the Hill’s method [1-3]. In addition, the method is utilized to track and identify the 
bifurcations, though such results are not included in the text due to page limitations. 
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1 Contributions of the paper

Linear parameter identification in structural dynamics is an already well-developed topic and is fundamentally based
on modal parameters [1]. However, the nonlinear counterpart is still not consolidated since these features are not valid for
nonlinear systems in a way that classical linear techniques can drastically fail to identify representative models [2].

An interesting technique to treat nonlinearities is the Volterra series since it is a generalization of the linear convolution
[3]. In this model the linear part of the response of the system is represented with the first Volterra kernel (i.e impulse
response function), while the nonlinear part is represented by the higher-order kernels. Many papers have already applied
the continuous-time version of this technique however it is very limited to cases where the motion equation is known
[4]. Recent investigations have been focused on discrete-time representation and the estimation of Volterra kernels using
only the input/output time-series [5, 6] In this work, the discrete-time version of this tool is applied to identify nonlinear
parameters in a clamped beam subjected to an axial preload which exhibits hardening stiffness nonlinearity.

2 Application in a buckled beam

The experimental setup was composed by a clamped aluminum beam with 460×18×2 mm excited by a shaker placed
65 mm from the clamped end and with the velocity measured by a laser vibrometer in the center of the beam (Figure 1).

(a) Schematic diagram. (b) Photo of the setup.

Figure 1: Experimental setup.

A chirp input sweeping frequencies around the first mode (20 to 50 Hz) in three different magnitudes (0.01, 0.05 and
0.10 V) was used to identify the Volterra kernels Hη . Since third-order harmonics and hardening behavior was observed
in the response of the system, a model considering until the η = 3 kernel was identified which can be represented by [3]:

y(k) =

η∑
m=1

 N1∑
n1=0

. . .

Nη∑
nη=0

Hη(n1, . . . , nη)
η∏
i=1

u(k − ni)

 (1)

where N1, ..., Nη is the memory length of the η-th kernel,y (k) is the output signal and u (k) is the input signal. Since
the model is linear in the parameters a least-squares approximation can be used to estimate the first three kernels for this
problem. With the reference kernels representing the structure, the deviation between the experimental kernels with the
ones identified with the integration of the motion equation can be used as a metric to update the parameters of the model.

Using the lowest input amplitude, the linear part of the motion equation was estimated (mass m, damping ratio ζ
and stiffness k) using the proposed metric considering only the first kernel. The higher amplitudes were then used to
compute the nonlinear cubic stiffness that describes the hardening behavior of the system. The values obtained mapping
the objective function were: m = 0.082 kg, k = 4130 N/m, while k3 = 1.73×108 N/m3 for the highest level of
input amplitude. The damping ratio however showed to significantly vary with the magnitude of excitation obtaining
ζ = [0.016, 0.033, 0.047] for a growing level of chirp input which may indicate some nonlinear behavior in the damping
as well. The performance of the identified oscillator with the estimated parameters is depicted in the Figures 2 and 3 which
shows the FRF and the stepped sine frequency response respectively comparing the experimental and the model response.
The model showed to reproduce the hardening behavior and also the jump phenomenon, however some discrepancy can
be found in this last response since force drop-out is inevitable in the experimental test.
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(a) Experimental FRF.
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(b) FRF of the identified model.

Figure 2: Comparison between the experimental and the model FRFs. The continuous line is the low input (0.01 V), 4 is
the medium input (0.05 V) and ◦ is the high input (0.10 V)
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(a) Experimental stepped sine response. The continuous
line is the low input (0.01 V), 4 is the medium input (0.14
V) and ◦ is the high input (0.20 V).
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(b) Stepped sine response of the identified model. The con-
tinuous line is the low input (0.05 N), 4 is the medium
input (0.60 N) and ◦ is the high input (1.50 N).

Figure 3: Comparison between the experimental and the model stepped sine responses.

3 Final remarks

This paper applies the Volterra model to identify parameters of the motion equation. This is a powerful tool since
it separates the linear and nonlinear responses with a generalization of the linear convolution. In this way, the linear
and nonlinear inverse problems can be treated in a separated way. This allows to apply other classical metrics for the
identification of linear parameters and then employ Volterra series to treat the nonlinear part of the system. The FRF and
stepped sine response of the identified oscillator showed to reproduce similar behavior to the experimental system.
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Comparison between a finite-element-based and a trajectory-based method for
computing damped nonlinear normal modes
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Pioneered in the 60s by Rosenberg, nonlinear normal modes (NNMs) were initially defined as families of synchronous
periodic oscillations of the autonomous conservative system. The NNM concept was then further generalized to non-
conservative systems by Shaw and Pierre. Based on geometricarguments, they defined a NNM as a two-dimensional
invariant manifold in phase space [1]. Inspired by the center manifold approach, they used a single pair of state variables
for manifold parameterization (a displacement and a velocity) and derived a set of partial differential equations (PDEs).
These PDEs globally describe the manifold’s geometry in terms of the remaining state-space variables which are func-
tionally related to the chosen master pair. The first attemptto numerically solve these PDEs and to compute NNMs as
invariant manifolds is that of Pesheck et al. [2]. PDEs were written in modal space and solved using a Galerkin projection.
In recent contributions, Touzé and co-workers [3] solved the same set of PDEs using finite differences whereas Renson
and Kerschen [4] used a specific finite element method in configuration space.

In this paper, the recently-developed finite element approach is compared to a new trajectory-based method. For this
study, a two-degree-of-freedom system including regularized Coulomb friction is considered. The governing equations of
motion are

ẍ1 + (2x1 − x2) + Fmaxtanh (Rẋ1) = 0,

ẍ2 + (2x2 − x1) = 0. (1)

with Fmax = 1.5 N andR = 1 rad.s/m.

The finite-element-based (FE-based) method grows the two-dimensional invariant manifold as a collection of annular
strips for which the manifold-governing PDEs are solved in configuration space. Recognizing that the PDEs are of hyper-
bolic nature, it was shown that solving these equations requires specific numerical treatments including a particular finite
element formulation and appropriate boundary conditions [4]. The invariant manifold obtained for the in-phase NNM
of the 2DOF (1) is presented in Figure 1(a). It was computed using 9 annular regions. For the last annular domain, the
invariant surface becomes almost vertical. This indicatesa failure of the parameterization and that it is not possibleto
further describe the invariant manifold using the preselected pair of master variables. This occurs because the invariant
manifold generally presents a complex folding structure that is embedded in the full phase space. To circumvent this
issue, Shaw and co-workers introduced the concept of multi-modal NNMs where the invariant manifold is described by
multiple pairs of variables [5]. While effective, this method still assumes an explicit and global description of the NNM
which does not completely solve the intrinsic parameterization issue.

The second (new) method considered here is a trajectory-based method which computes the invariant surface as a collec-
tion of trajectories defined using boundary values problems(BVPs). It is an alternative method for computing invariant
manifolds that does not rely on a predefined parameterization. Originally proposed by Doedel [6, 7] in the general context
of two-dimensional (un)stable invariant manifold calculations, the method covers the manifold using trajectories defined
as a one parameter-family of curves. More precisely, the method considers successive BVPs to (i) compute a trajectory
on the invariant manifold, (ii) continue the trajectory to cover the manifold. For stable systems, the computation of the
first trajectory is similar to backward time integration with initial conditions that, close to the equilibrium point ofthe
system, lie in the tangent space of the NNM. The in-phase NNM computed with this trajectory-based approach is the
blue surface presented in Figure 1(b). It was obtained by constructing a mesh between the adjacent trajectories. In the
center of the figure, the solution obtained with the FE-basedapproach in Figure 1(a) is presented in orange. It perfectly
overlaps the trajectory-based results. The blue mesh also appears to fold in several regions recognizable by the darker
blue color. The projection in Figure 1(c) of three trajectories onto the master’s coordinate plane used by the FE-based
method confirms this observation. The trajectories intersect each other in two different regions around(x2, y2) = (−5, 2)
and(x2, y2) = (2, 5). Clearly, the FE-based method is limited in amplitude by those regions whereas the trajectory-based
approach captures the manifold without limitation.

In summary, the finite-element-based method accurately captures the NNM and, based on the manifold’s parameteriza-
tion, allows to reduce the system’s dynamics onto the invariant surface (i.e., a SDOF oscillator). However, the explicit
parameterization limits the amplitude up to which the manifold can be computed. The trajectory-based method is an alter-
native approach where no explicit parameterization is assumed. It provides a means to calculate invariant manifolds with
complex topologies. However, contrary to the FE-based method, the absence of parameterization prevents from obtaining
a reduced-order model of the system.
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Figure 1: In-phase NNM of the 2DOF system (1). (a) Invariant manifold computed with the finite-element-based method;
(b) Comparison between the trajectory-based method (in blue) and the FE-based results in orange; (c) top view of three
trajectories computed with the BVP formulation.
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Abstract 

This paper presents a comparison between two reduced-order 

approaches of electrostatically actuated microbeams. The 

governing equations of motion have been derived considering 

nonlocal theory of elasticity. Galerkin-based reduced order 

model has been applied to solve the governing nonlinear 

equation with two approaches. In the first approach as used by 

many researchers in the literature, both sides of the equations 

are multiplied with the denominator of the electric term and 

then the Galerkin method is applied. In the second approach 

direct Galerkin method has been applied to solve the equation. 

The results show that for a given beam, although the both 

approaches predict same pull-in voltage in most cases, but the 

first approach cannot predict the pull-in instability in some 

cases and also misses some fixed points. So the bifurcation 

diagrams and phase portraits have different quality in the two 

approaches. Also, the results show that the singular point 

which is the position of the substrate plate acts as a strong 

attractor in the capacitive structures. 

 

Keywords: Electrostatic, Fixed Point, Nonlinearity, Nonlocal 

theory  

 

1. Introduction 

Over the last decades, microelectromechanical systems 

(MEMS) have taken root firmly in research and technology 

world.  

Numerous researches have shown that study on the 

mechanical behavior in electrostatically actuated 

microsystems is faced with various challenges due to 

existence of nonlinearities, which arise from a number of 

sources such as inherently nonlinear electric excitation. 

From elasticity view of point, many researchers show that at 

micron and sub-micron scales the materials have strong size 

dependence in deformation behavior [1].  

Eringen in 1962 [2] introduced the nonlocal elasticity theory 

in which he has assumed that in a material body, stress at point 

is not only a function of the strain at that point but also strain 

at all points in the continuum.  

Some researchers have proposed various approaches in the 

literature focusing on the nonlinear electric force term, which 

is difficult to analyze directly. A complete review have been 

given by Nayfeh et al. [3] where different reduction methods 

based on the reduction of nodes of the discretized system and 

on the reduction of domains have been presented. 

The purpose of this paper is to report that multiplying both 

sides of the governing equation with the denominator of the 

electric term proposed by some researchers may not be 

applicable in some cases.  

 

2. Electrostatic Actuation Structure 

Figure 1 shows an electrostatically actuated fixed-fixed Euler-

Bernoulli micro-beam.  

 
Fig. 1 An electrostatically actuated fixed-fixed micro-beam 

 

Using the Hamiltonian principle, the governing non-

dimensional equation for transverse vibrations of the beam in 

nonlocal theory is written by:  
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In order to analyze the bifurcation of the microbeam, we use 

two approaches: in first one introduced by some researchers, 

firstly both sides of the static form of Eq. 1 are multiplied by
4ˆ(1 )w− , then, assuming

1

ˆ ˆ( )i i
i

w a xϕ
∞

=

= ∑ , considering the first term 

of this series, substituting in static equation, multiplying with

ˆ( )xϕ  and integrating the outcome from zero to one, the 

following algebraic equation will be written as: 
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In the second method (proposed approach), direct Galerkin 

method is applied to obtain the following relation: 
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Now, one can obtain the variation of the applied voltage with 

changing the coefficient a, and consequently ŵ . 

In order to investigate the stability of the fixed points obtained 

by the above analysis, we use two mentioned approaches as 

well. The first approach includes multiplying both sides of Eq. 

1 with 4ˆ(1 )w− and then applying the Galerkin method to 

achieve a reduced order model by assuming

( ) ( )
1

ˆ ˆ ˆˆ ˆ( , )
n

j j
j

xw x t T t ϕ
=

= ∑ . Now, the following reduced order model 

is obtained: 
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��

             

(4) 

 

In second approach, direct Galerkin method similar to the 

static case is applied. 

 

3. Results and Discussion 

Position of the fixed points in the state-control space versus 

given voltage are shown in Figs. 2a and 2b using the first and 

second approach, respectively. These figures are plotted for 

different values of the nonlocal parameter, µ . As shown, for

2
(0.02 )Lµ = , five voltage ranges appear. In the first and fifth 

ranges there is only one fixed point, in the second and forth 

ranges three fixed points and in the third one, five fixed points 

are observed in bifurcation diagram. For 2
(0.1 )Lµ = , for all 

given voltages there is only one fixed point. As shown in Fig. 

2a, for 2 2
(0.02 ) and (0.04 )L Lµ = two stable and unstable 

branches meet together at pull-in point (saddle node 

bifurcation), but for 2
(0.1 )Lµ = it is not seen such a position. 

So, for this case one cannot predict the position of the pull-in 

point in bifurcation diagram. Figure 2b illustrates the 

bifurcation diagrams for mentioned values of the nonlocal 

parameter using the second approach. As shown, for all given 

voltages under pull-in voltage we have two fixed points on 

upper side of the substrate. As shown, for the all values of the 

nonlocal parameter one can see the position of the pull-in 

point in bifurcation diagram. 

 
(a)  (b) 

Fig. 2 Bifurcation diagram of the beam for 2 2 2(0.02 ) ,  (0.04 ) and (0.1 )L L Lµ =  
 using  a) the first approach ,  b) the second approach 

Now, the phase portraits using the first and second approaches 

are plotted to investigate the stability of the fixed points. 

Figure 3 shows the phase portrait for 2(0.02 )Lµ =  and V=9.4V 

using the first approach. With attention to this figure one can 

recognize the stable and unstable branches in bifurcation 

diagrams. As obtained from Fig. 3, the first approach cannot 

predict the singular point (position of the substrate). 

 
c 

Fig. 3 Phase portrait for 2(0.02 )Lµ =  and V=9.4V 

In Fig. 4 for V=8V (smaller than the pull-in voltage) one stable 

center point and one unstable saddle point are shown. It must 

be mentioned that unlike the first approach, the second one 

predicts the singular point which occurs at ˆ 1w = − . This type 

of singular points, which is the fixed position of the substrate, 

is introduced as an attractor because any motion which starts 

in the neighborhood of this point will attract to it with infinite 

speed. It should be mentioned that the singular point can be 

considered as a stronger attractor than the center point, 

because as shown in figure 4 the basin of attraction of the 

singular point is greater than the center point. On the other 

hand, only the motions which start at a finite neighborhood of 

the center point orbit around it whereas the motions which 

start at any other point in phase plane will attract to the 

singular point. Thus, we can conclude that the basin of 

attraction of the singular point is an infinite basin. 
 

 
Fig. 4 Phase portrait for 2(0.1 )Lµ =  and V=8V 

 

4. Conclusion 
In presented work we used two Galerkin-based reduced 

order approaches to treat the governing equation of 

motion of an electrostatically actuated microbeam which 

were derived considering the nonlocal theory of elasticity. 

The results showed that in most cases the both approaches 

calculate the same pull-in voltage. But, from bifurcation 

view of point there were a qualitative difference between 

two approaches. Using the first approach missed some 

fixed points in the bifurcation diagram. The results 

showed that this approach cannot predict the singular 

points in motion trajectories which clearly were shown by 

the second approach. Also, the results showed that the 

singular point acts as a strong attractor where the basin of 

attraction of it is an infinite basin in phase plane, because 

any motion which start from the outside of the basin of 

attraction of the center point will attract to the singular 

point. Another remarkable result is that the first approach 

cannot predict the pull-in instability for one range of the 

nonlocal parameter values. 
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Tools for analyzing the strongly nonlinear dynamics of these systems have been 

developed, such as wavelet spectra superpositions on frequency-energy plots – FEPs of 

Hamiltonian dynamics and complexification/averaging analysis [1]. As shown previously in 

literature, two-dimensional FEPs provide a synoptic global description of the frequency and 

energy dependencies of periodic orbits of Hamiltonian n-degree of freedom (DOF) dynamical 

systems, and can be used to interpret complex dynamical transitions of weakly damped 

systems possessing even strong, non-smooth nonlinearities [2]. 

 

In this paper, we propose a new nonlinear model updating strategy based on global/local 

nonlinear system identification of a broad class of nonlinear systems. The approach relies on 

analyzing the system in the frequency-energy domain by constructing Hamiltonian or forced 

and damped frequency – energy plots (FEPs). These plots depict the steady-state solutions of 

the systems based on their frequency-energy dependencies.  The backbone branches, branches 

that correspond to 1:1 resonances, are calculated analytically (for fewer DOFs) [3] or 

numerically (e.g., shooting method) [4]. The system parameters are then characterized and 

updated by matching these backbone branches with the frequency-energy dependence of the 

given system by using experimental/computational data. The main advantage of this method is 

that, no type of nonlinearity model is assumed a priori and the system model is updated solely 

based on time simulations and/or experimental results.  We hope that our methodology will 

stand as a first step towards a nonlinear model updating methodology of broad applicability. 

 

     

                         Figure 1. 2-DOF system with a nonlinear connection depicted in Figure 2. 

 



 

 

      In order to apply our proposed nonlinear model updating strategy, we consider the 2-DOF 

system depicted in Figure 1, with parameters 

k
1

= 8400 N/m, k
2

= 6470 N/m, m
1

= 0.066 kg, m
2

= 0.060 kg . The system can be regarded as a 

reduced order model of a larger system, consisting of two cantilever beams with a nonlinear 

coupling in between them. The nonlinear coupling between the two masses is given in Figure 

2.  Until some breaking point, which is negative 4 mm in this example, the connection is an 

essential, cubic-type nonlinearity. After the breaking point, the connection suddenly softens 

and behaves as a “zero-stiffness” member. This behavior suggests that the connection has 

membrane-like properties. Due to these hardening and softening effects, we expect to see 

interesting and very complicated transitions in the frequency-time domain for this system, 

which makes it a good candidate to apply our nonlinear model updating strategy. 

             

      
 

               Figure 2.  a )  The force-displacement relationship of the nonlinear connection in 

Figure 1.  

 

  The nonlinear model updating strategy for this system is applied as follows. In order to 

find the global frequency-energy behavior of this system, we analyze it numerically with 

multiple impulse tests and find the transient frequency-energy behavior. Then, by looking at 

this frequency-energy dependence, we decide a nonlinearity model, whose parameters are 

optimized by comparing the numerical frequency-energy dependence from the time 

simulations to the Hamiltonian FEPs computed by NNMcont developed by Peeters et al [4]. In 

Figure 3, a comparison of the time series for the original and optimized models is depicted for 

an impulse with maximum amplitude of 100 N, depicting the linear region and 5000 N, 

depicting the strongly nonlinear region.  As observed in Figure 3, the optimized model 

captures the nonlinear behavior very accurately for both cases. For the time simulations, low 

damping values are used in order to be able to use the Hamiltonian FEPs as our reference 

models. 

            



                                   (a)      (b) 

 

Figure 3. Comparison of the time series for (a) 100 N impulse test (b) 5000 N impulse test 
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Test and evaluation methodologies targeted for model identification and structural health monitoring of physical one-dimensional 
solid continua are interesting topics of basic research-both at the theoretical and experiment levels-with measurable economic and 
societal impacts in real live applications.  For example, some core elementary structures in technology and biology are essentially one-
dimensional continua; and their function may depend on reliable monitoring of their dynamics response. Regarding structural health 
monitoring, one challenge is spatial measurements of flexible rod dynamics with embedded sensors in such a way as to record the 
interactions of the slow bending motions and fast torsion and extension motions. As the rod structure is the paradigm of the structure 
used to establish the modern geometric mechanics framework, here it is used as a prototypical structural system to cultivate novel 
ideas for distributed sensing of continuum slow-fast dynamics in a geometrically exact manner. We exploit the geometric concepts of 
the Slow Invariant Manifold (SIM) and the transversal fiber of Fast Invariant Manifolds (FIM) to conduct geometry consistent 
measurements in space using limited resources of sensors: here a triad of light weight acceleration sensors. They follow the local 
geometry of the deforming beam and thus they sense naturally the acceleration with reference to a local time varying coordinate 
system.  

 

Figure 1  Left part: Photographic view of a physical long aluminum alloy beam whose transverse acceleration is measured by a pair of relocated 

accelerometers controlled by a fixed one.  Right part: Distribution of the energy (right) of the mined space-time database over its intrinsic POD 

modes: local motion (circle) vs global motion (star). 

We have tested long aluminum alloy beams both with rectangular and square cross-sections, Fig 1a.  The sensing direction of the accelerometer 
intersects the gravitational field direction. The question that arises naturally is whether the sensed dynamics reflect the fact that the sensor is 
forced by the gravitational field. First, we answer the question whether the space-time database mined by the pair of the relocated sensors has 
physical meaning. The pair of relocated sensors is controlled by a fixed sensor. By this way we create indirectly nearly simultaneous spatial 
measurements. The dynamics are not restricted to small amplitudes and in the plane: The beams are excited in such a way as to created free 
motions that are a mixture of bending-extension-torsion in three-dimensional space. The typical space-time database collected by the two 
relocated sensors is evaluated in terms of its intrinsic proper orthogonal decomposition modes and the associated POD energy distribution, Fig. 
1b. Despite the introduced errors, the experiments are repeatable,  a fact that verifies the merit of the sensing technique. We follow the 



following method of analysis: We create a sequence of geometric objects which initially are local and gradually become global to cover the 
whole time horizon of the motion. We find that the shape of the dominant POD mode changes as a function of the considered time horizon. For 
short time horizons, the time modulation of the POD mode has a single resonant frequency but as the time horizon expands the shapes change, 
Fig. 2b, quantitatively and this is reflected in the time modulation as the presence of two resonant frequencies. We see this very clearly in Fig. 
3. This is either the effect of a space-time modulation stemming from the fact that the accelerometer interacts with the gravitational field or/and 
also indicates that the spatial coupled vibration of the beam is nonlinear. These two issues are topics of an ongoing investigation. The work 
contributes in the area of identification of vibration mode in experimental continuous structural dynamics.  

 

Figure 2  Experiment repeatability: dominant POD mode: Test 1 vs Test 2 (left). Dominant POD modal shape: local (circle) versus global (star) 

space-time database.  

 

 

Figure 3: POD time modulation of dominant POD mode: (a) local database (17500 time points) , (b) global database (192500 time points).  
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Abstract 
This paper investigates the nonlinear dynamics of a 

capacitive micro-resonant beam considering the 

nonlocal theory of elasticity. Presenting a 

mathematical modeling, the microbeam has been 

deflected by a DC voltage and then the dynamic 

equation has been obtained by small motions about 

the deflected position. The governing nonlinear 

equation of motions has been solved using the 

perturbation method. The results have shown that, 

the nonlocality has softening effect in the beam 

motions against the hardening effect of the 

stretching term.     

 

Keywords: Nonlocal theory, stretching, frequency 

response, perturbation method. 

 

1. Introduction 
Beams are key component of many structures from 

nano to macro scales in science and technology 

world. At small scales many researches show that 

the beams have size dependent mechanical 

behavior. Ignoring the microstructure of the beam 

material, classic elasticity cannot predict this 

behavior properly. In classical elasticity the 

deformation behavior is described by the local 

parameters of stress. 

In the classical elasticity theory, stress at a point is 

considered to be a function of a strain at that point. 

On the other hand, Eringen in 1972 [1] introduced 

the nonlocal elasticity theory, in which they have 

assumed that in a material body, stress at  a point is 

not only a function of the strain at that point but 

also strain at all points in the continuum. This 

hypothesis leads to introduce atomic forces and 

internal length scale parameter in constitutive 

equations.  

The fixed-fixed microbeams represent an example 

of the structures suffering from the geometric 

nonlinearity stretching generated by mid-plane. For 

large deflections this nonlinearity becomes more 

significant. The stretching term hardens the beam 

with increasing the transverse deformation. 

Microelectromechanical systems (MEMS) 

technology has already taken root firmly in today’s 

world. Electrostatically actuated devices form a 

broad class of MEM devices due to their simplicity, 

as they require few mechanical components and 

small voltage levels for actuation. 

In this paper, contrast effect of the stretching term 

and nonlocality of the beam theory in nonlinear 

dynamics of the electrostatically-actuated 

microbeam is investigated. In spite of the existence 

of the nonlinearity in the system, this conflict effect 

can result in a linear frequency response curve for 

some values of the nonlocal parameter. 

 

2. Model Description 
Fig.1 shows a schematic view of an 

electrostatically-actuated micro-resonant beam. 

This resonator consists of an elastic beam with 

fixed-fixed boundary conditions which is 

suspended over a stationary conductor plate. When 

a voltage is applied between two electrodes, an 

attractive electrostatic force pulls down the upper 

deformable electrode.  

 

 
Fig.1. An electrostatically actuated fixed-fixed microbeam 

 

Using the Hamiltonian principle, the governing 

equation for transverse vibrations of the beam in 

nonlocal theory by considering the stretching term 

is written by: [2] 
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In order to solve the governing equation, we apply 

the Galerkin method to obtain a reduced order 

model. So, the ( , )
d

w x t  is considered as following: 

( , ) ( ) ( )

1
d

n
w x t x T t

j j
j

ϕ= ∑
=

  

(2) 

 

Substituting this relation in Eq. (1), one can obtain 

the following n coupled ordinary differential 

equations: 

This equation can be written in matrices form as 

following: 
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To determine a uniformly valid approximate 

solution of Eq. (3), the method of multiple time 

scales [3] (MMTS) is used.  

 



3. Results and Discussion 
For dynamic analysis, we study the effects of the 

applied DC voltage, stretching and nonlocality on 

the frequency response of the beam. To this end we 

consider an epoxy fixed-fixed microbeam with the 

specific geometrical and material properties. 

Figure 6 exhibits the nonlocality effects on the 

frequency response for the DC voltage of 3.5V.  As 

shown, increasing the nonlocal parameter tend the 

curve from hardening behavior to softening 

behavior.  

 
Fig 2. Frequency response of the beam for various values of the 

nonlocal parameter 

 

The hardening effect of the nonlocality illustrated 

in figure 6, is in conflict with the hardening effect 

of the stretching. This matter is illustrated in figure 

7, where considering the nonlocal theory for 
2(0.1 )Lµ = modifies the nonlinear frequency 

response curve by destroying the hardening effect 

of the stretching.  

 
Fig. 3. Frequency response of the beam for considered local and 

nonlocal theories 

 

4. Conclusion 
In the presented work, the nonlocal theory of 

elasticity was used to obtain governing equation of 

motion of a capacitive microbeam. In dynamic 

analysis, first a DC voltage was applied to deflect 

the beam and then by applying an AC voltage, 

small motions of the beam was considered about 

the deflected position. The Galerkin method was 

applied to reduce the governing equation to a single 

ordinary differential equation. Then, the 

perturbation method was used to treat the nonlinear 

dynamical behavior. We investigated the effects of 

the nonlocality on the frequency response of the 

beam. The results showed that, the nonlocality has 

softening effects while the stretching term hardens 

the system with increasing the amplitude of the 

motion. Also, it was shown that for specific values 

of the design parameters the nonlinear frequency 

response in local theory can be changed to a 

conventional curve (without the hardening or 

softening effects) when we consider the nonlocal 

theory of elasticity. These results can be useful for 

precise designing of the micro-resonators in which 

the frequency response curves have a significant 

role in analyzing their performance.     
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Abstract: In this paper Transversal vibration of a micro-beam in interacting with a micro-scale fluid media based on micro-

polar theory has been investigated. The proposed model for this study that appears in the most of MEMS devices especially in 

micro-resonators consists of a clamped-clamped micro-beam bounded between two fixed layers. The gap between the 

micro-beam and the layers is filled with air. Fluid field affects the behavior of the micro-beam. Transversal vibration of the 

micro-beam squeezes the air, causes the squeeze film damping phenomenon to be occurred. This phenomenon occurs as a 

result of massive movement of the air underneath the beam which is resisted by the viscosity of air. Equation of motion 

governing the transverse deflection of the micro-beam based on non-local elasticity theory and also non-linear Reynolds 

equation of the fluid field based on micro-polar theory have been non-dimensionalized, linearized and solved simultaneously 

to calculate the quality factor of the squeeze film damping. The effect of non-dimensional length scale parameter of the air 

and micro-beam for different values of micro-polar coupling parameter has been investigated. The quality factor of the 

squeeze film damping for different values of length-to-width ratio of the micro-beam, squeeze number and non-dimensional 

pressure have been calculated and compared to the obtained values of quality factor based on classic theory. 

Key words: MEMS, Micro-polar theory, Squeeze film damping. 

Introduction 

Recently, progress in technology of micro-electromechanical systems (MEMS) can be seen in fabricating new 
devices and creating innovative applications. The fact that they can be produced at low cost in large volumes, 
with light weight, small size and low-energy consumption, make them attractive and cause a great interest 
among scientists and engineers due to their several advantageous. The effect of squeeze film damping on the 
response of microstructures that appears in most of MEMS devices as micro-resonators have been studied 
extensively in recent years. Damping characteristics for the first three flexural modes of vibration of the 
resonator were obtained by Pandey and Pratap in which static deflection due to DC load was neglected [1]. 
Younis and Nayfeh obtained bias deflection of the micro-plate under different ambient pressures by using 
perturbation method [2]. Squeeze film characteristics of cantilever micro-resonators for higher modes of 
vibration under large DC load were obtained operating in different ambient pressure conditions by Chaterjee 
and Pohit [3-4].  Khatami and Rezazadeh [5] studied the dynamic response of actuators to electrostatic force 
and mechanical shock. They showed that the combined effect of a shock load and an electrostatic actuation 
makes the instability threshold much lower than the predicted threshold, considering the effect of shock force 
or electrostatic actuation alone. 
Although several studies have been done on the dynamic behavior of the micro-structures under squeeze film 
damping but most of them have used the linearized Reynolds equation obtained by classic theories, for 
simulating the fluid field. Numerous experimental results indicate that,  as fluid  flow moves differently in the 
micro-scale than that in the  macro scale, in the study of micro and nano-scale fluid mechanics, the Navier-
Stokes equations derived from classical continuum, become incapable of explaining the micro scale fluid 
transport phenomena [6]. A novel approach was developed by Eringen [7] which includes the effect of local 
rotary inertia and couple stresses and offers mathematical foundation to capture the motions of the micro-
scale fluids. Todays, researches show that in the field of micro-scale fluids, applying micro-polar fluid theory 
can be a useful tool in modeling of the micro-flows and micro-structures. 
In this paper, free vibration of the clamped-clamped micro-beam under the effect of squeeze film damping 
based on micro-polar fluid theory is studied. The coupled governing equations of motion of the beam based on 
non-local elasticity theory and the fluid pressure field based on micro-polar theory is solved simultaneously 
using Galerkin based reduced order model. The effect of length scale and coupling parameter of the micro-
polar theory on the values of calculated quality factor is investigated. The values of calculated quality factor 
are compared to the values obtained based on classic theory, and these differences are discussed and 
investigated.  

Methodology and results 
The proposed model for this study is shown in Fig.1.It consisted of a clamped-clamped micro-beam with two 
fixed layers on the upper and lower surfaces of it. The distance between the micro-beam and the parallel 
layers is filled with air. 

mailto:%20hossainpour@sut.ac.ir
mailto:minaghanbari@yahoo.com
mailto:g.rezazadeh@urmia.ac.ir


 

Fig.1. proposed model for studying the effects of the fluid field on the behavior of the micro-beam 

The coupled equations of motion of the transverse deflection of the beam based on non-local elasticity theory 

and non-linear Reynolds equation of the fluid field based on micro-polar theory are non-dimensionalized, 

linearized and then discretized by applying Galerkine-based reduced order model. These coupled equations 

are solved simultaneously to calculate natural frequencies of the beam for obtaining damping coefficient and 

quality factor of the micro-beam. Effects of micro-polar parameters of the fluid and non-dimension length 

scale parameter of the micro-beam on the obtained values of quality factor are investigated and are compared 

to the values that are obtained based on classic theories. The results are shown in Fig.2 in which N refers to 

coupling parameter of the fluid field. 

 

 Fig.2. Effect of micro-polar parameters and non-dimension length scale of the micro-beam on the values of quality factor 

 
Conclusion 
Results showed that increasing micro-polar parameters causes the quality factor to decrease. The results also 
showed that applying micro-polar theory and also non-linear elasticity theory underestimates the values of 
quality factor that are obtained based on classic theory. 
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After the first experimental observation of Bose-Einstein Condensation (BEC) in 

1995 [1], many physicists and applied mathematicians focus on this topic 

significantly. Different theories were developed to describe the BEC depending 

various ranges of temperature and interaction. In the low temperature regime, a BEC 

is well described by the non- linear Schrödinger equation known as the Gross–

Pitaevskii Equation (GPE) with the macroscopic wave function 
  ψ =ψ (x,t) which 

evaluates with time and space. The GPE was first developed independently by Gross 

[2] and Pitaevskii [3] in 1961 to describe the vortex structure in superfluid. The 1-D 

Gross-Pitaevskii equation is given as 

2 2
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where m  is the mass of the atoms of the condensate, 0g  describes the interaction 

between atoms in the condensate. GPE posseses a very rich dynamics and exhibits 

soliton type solutions.  

 

 Many theoretical studies have been performed on nonlinear properties in Bose-

Einstein Condansate (BEC) for different optical lattice potential [4,5,6]. Recently, 

supper lattice potential has been fulfilled chaotic behavior in BEC [7,8].  In this work, 

we study the dynamics of 1D Gross-Pitaevskii equation (GPE) for different external 

trapping potentials. we consider that the external potential  ( )
ext

V x  in Eq. (1) is a tilted 

bichromatical potential  
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where F is inertial force, which accelerates the atoms in the x direction, 1V and 2V  are 

the respective amplitudes. Firstly we briefly present an analytical study of GPE for 

the tilted bichromatic optical lattice potential. After that we perfom numerical 

simulations of the GPE for tilted bichromatic and Gaussian optical lattice potentials. 

We show that density of flow (J) affects behavior of BEC for different potential 

depths.  In addition, for regular case with a number of density of flow under the 

bichromatic potential exhibits similar behavior with Wainner Stark lattice potential 

[5]. Regular and chaotic behaviors are investigated for different initial conditions with 

small and big tilted value. Regular behaviour is seen when the tilted force is really 

small and density of flow is big. Other cases BEC shows chaotic behaviour for two 

types of potential. 
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This paper relates to the continually advancing field of micro-electro-mechanical-systems (MEMS). With MEMS 

technology, there are many different areas of concentration available for research. This paper addresses analysis and 

preliminary characterization of a doubly-clamped type MEMS chemical gas sensor for detection of Hydrogen sulphide.  

Hydrogen sulphide (H2S) is a toxic gas with apeculiar foul smell. It is corrosive and is naturally occurring due to 

decomposition of some organic matter in wastewater. It is also used in large quantities to extract heavy water. Monitoring 

and control of H2S in ambient is therefore importantin laboratories and industrial areas where it is used as a process gas, 

generated as abyproduct or produced naturally in wastewater swamps. There currently exist several different types of 

MEMS chemical gas sensors. Each is based on a different detection method, e.g., capacitive, thermal, resistive, etc., and is 

used for specific tasks. Out of all currently available detection methods, the most common is the gravimetric method. The 

gravimetric sensor works by adsorbing the molecules in a special material, usually a polymer, which alters the overall 

mass of the sensing element that can then be measured, or detected, to identify the chemical adsorbed. 

One of the more exciting developments in the field of gravimetric chemical MEMS has been with the advancement of 

beam-type sensors. These beams are small and usually on the order of only about 300 µm in length. In order to utilize the 

gravimetric method, a beam is coated with a layer that allows an analyte to bond to it and change its mass, which in turn 

changes the resonant frequency of the beam. The change in frequency can then be measured and analyzed and from it, the 

amount of added mass can be calculated for example current research in the beam-type resonating sensors for the 

detection of hydrogen is developing measurement capabilities of under 1 ppm (part-per-million). Parametric analyses 

involving chemical adsorption processes will be discussed in this paper. Such analyses considered different parameters, 

e.g., damping and stiffness as well as changes in their values, to determine contributions they make to the quality of the 

frequency data and the effect they have on sensitivity of the MEMS beam-type gas sensor. Once these parametric analyses 

were completed, it was possible to estimate the sensitivity of the beam, or the ability for the beam to detect frequency 

shifts due to adsorption of the target gas. 

In this paper, we will derive the required formulas for the effect of added mass on the resonant frequency of doubly-

clamped micro-beam (Fig. 1) due to the mass addition built up along the beam. In the main manuscript we will discuss 

that a net surface adsorption of mass is induced in doubly-clamped beam, along its surface. For the resonators used here, 

this coincides with the adsorption in the active layer only; other parts of the beam do not contribute to the mass addition 

because the non-adsorptive surface to the analyte. The net mass addition determines the resulting effect on resonance 

frequency and/or stiffness of the device. 

 

 

Figure 1.  Graphical representation of a doubly-clamped beam with the dimensions used in the paper, as well as the axis 

definition, (A.M.: Adsorbent Mass) 

 



The effect of added mass on the resonance frequency of a doubly-clamped beam is calculated to leading order for small 

mass loads, and thus gives a linear relationship between the resonant frequency shift and the applied added mass change.  

The main objective of this paper is to comprehensively analyze vibration characteristics of doubly-clamped microbeam-

based sensors with application to ultra-small mass detection and low dimensional materials characterization. The work 

focuses on theoretical developments commercially named Active Probes, which are extensively used inmost today’s 

advanced Atomic Force Microscopy (AFM) systems. Due to micro structure of the beam, a general and comprehensive 

framework is introduced for forcedvibration and modal analysis of the beam. 

 It is demonstrated that a significant enhancement on sensingaccuracy of Active Probescan be achieved using the proposed 

model. The material properties are expressed informs of added mass force acting on the surface as a result of response of 

material to applied electricfield. Since the application of bias voltage to the beam results in the surface displacement 

innormal direction, the microbeam is considered to vibrate in one direction with transversal motion. In this respect, it is 

demonstrated that the system can be governed by a set of partial differential equations along with boundary conditions. 

Overall in this paper, a precise dynamic model is developed for doubly-clamped micro-beam for ultra-small mass 

detection purpose. A distributed model which is considering higher order elasticity theories for the problem is 

investigatedassuming the beam as an electrode of a micro-capacitor. This model can alsobe utilized in AFM systems to 

replace laser-based detection mechanism with other alternative transductions. The dynamic response of a doubly-clamped 

microbeam due to application of an AC voltage in presence of abias DC voltage will be studied. The frequency resonance 

ofthe beam is determined and it is illuminated that increasing in the bias voltage will make the frequency sensible. 

For verification of our proposed micro-beam, a microbeam with the geometric and material properties listed in Table 1 

was considered. In Tables 2 the calculated pull-in voltage was compared to the results of existing work for the fixed–fixed 

micro-beams having properties shown in Table 1. As shown the calculated pull-in voltages are in good agreement with the 

results presented in previous work. As you seen in Table 2, 22.07 (V) is pull-in voltage for our proposed model, however 

this will be increased to 22.58 (V) when we consider the couple stress effect in our model. It could be explained that with 

considering couple stress effect, the stiffness parameter of vibration equation of the micro beam increases and then cause 

to higher pull-in voltage. In main manuscript we will discuss more on this effect. 

 

 

 

 

 

 

 

Table 1. The values of design variables 

Design Variable Values for comparison 

pull-in voltage 

Proposed Values for 

sensor 

Length 350µm 600 

Width 50µm 150 

Thickness 3µm 5 

Gap 1µm 1 

Young's Modulus 169GPa 169GPa 

Density 2331 kg/m
3
 2329 kg/m

3
 

electrical permittivity of air 8.85 PF/m 8.85 PF/m 

Poisson's Ratio 0.06 0.06 

 

Table 2 Comparison of the pull-in voltage for a fixed–fixed microbeam 

 Our result  Energy model MEMCAD 

Pull-in Voltage (V) 20.1 20.2 20.3 

 



After considering adsorption of H2S natural frequency shifting due to presence of gas molecules illuminated in frequency 

responses in both situations: considering couple stress effect and without its effect, that are plotted in Figure 2. As it can 

be seen in the figure frequency shifting is changed approximately 341.6 kHz in first case and 230.8 kHz in second state 

due to adsorption of gaseous molecules on the micro-beam that easily is detectable. Also, it is clear that with considering 

couple stress effect amplitude of the resonater will be reduced that it could be easily seen from the illustrated picture. It 

can be concluded that considering couple stress effect is effective in amount of frequency shifting and cause to increase it. 

 
Figure 2- Frequency response: Shifting frequnecy with considering Couple Stress is about 110.8 KHz more than state 

without considering its effect due to added gaseous molecules 
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EXTENDED ABSTRACT 

Adhesion bond of a micro-spherical particle on a flat vibrating 

rigid substrate creates restitution force and rolling moment 

resisting to its out-of-plane and in-plane motions, respectively, 

(Fig. 1). The resistance of a micro-particle on a surface to 

rocking and rolling has relatively rarely been experimentally 

explored with few exceptions even though it is critical in 

particle removal and attachment [1]. Recently, based on 

ultrasonic base excitation and interferometric sensing 

technique, a non-contact method was introduced for observing 

dynamic behavior of adhesive micro-particles on rigid flat 

substrates (Fig. 2) [1]. However, complex and coupled 

dynamics of a vibrating particle can result in various natural 

frequencies in the experimentally obtained spectral domains of 

the particle which can lead to an ambiguity in adhesion 

characterization[2, 3]. For some spherical micro-particles on a 

vibrating flat substrate, in addition to their predicted rocking 

resonance frequencies, other resonance peaks at their doubles 

are observed (Fig. 3). Employing the vibrational spectroscopy 

approach reported in [2], the total out-of-plan displacement of 

a microparticle in temporal domain is acquired and then 

transformed into spectral domain for understanding their 

frequency contents. As depicted in Figs. 3. a pair of peaks in 

the spectral response of a PSL (polystyrene latex) at 45.16 and 

82.70 kHz is observed. Employing the Newton’s second law 

of motion and Euler law of angular motion, the equations of 

in-plane and out-of-plane motions are derived:  

2 2
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I m r m r M
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(1.a) 

(1.b) 

Substituting an approximated in-plane harmonic solution ( ) sin( )
r

t tθ ω= Θ  into Eq. 1.a, the right-hand side 

of the resulting equation, acts as and excitation term
 
and forces the system to oscillate at an additional 

frequency which is double of the rocking frequency
rω . Therefore, due to the nonlinear coupling, the 

purely rocking motion can excite the out-of-plane motion with a frequency of 2 rω . Note that, since the 

interferometer measures the out-of-plane movement of the top of a particle as it is oscillates, as it was 
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Figure 1. The independent coordinates of the 

proposed two-dimensional adhesion model for the 

simultaneous out-of-plane ( ) and in-plane ( ) 

motions of a spherical particle on a vibrating surface 

(not to scale).up).  
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explained in [2], only modifying the approximated solution ( )tθ by adding a non-zero term (
0
(...)θ ), as

0
( ) sin( ) (...)

m r
t tθ ω θ= Θ + , leads to the out-of-plane displacement oscillating not only at 

rω , but also at 2
r

ω

. The term
0 (...)θ , which causes the rocking resonance frequency doubling effect, attests that the rocking 

motion occurs around an inclined axis with respect to the substrate normal. This inclined rocking motion 

implies the existence of whirling-like motion of a particle and/or the nonlinear component coming from 

the presence of the nonlinear damping term in Eq. 1.b. In conclusion, based on the presented two-

dimensional dynamic model of an adhesive micro-spherical particle on a flat substrate, it is found that 

nonlinear coupling between its in-plane (rocking) and out-of-plane modes of motion is the source of 

reported rocking frequency doubling phenomenon. It is explained that, in order to observe both the 

rocking resonant frequency and its double in the experimental measurements, the particle has to 

experience rocking motion around an inclined axis with respect to the surface normal. This implies the 

presence of whirling-like motion of particles in the reported experiments. The excitation 

modes/mechanisms and/or the nonlinear coupling effect could cause a whirling-like motion. By matching 

the rocking resonance frequency value of simulations and experimental results work-of-adhesion values 

can accurately be extracted while in previous studies, the doubling effect was leading to confusion in 

adhesion characterization since ambiguity existed in choosing the resonance frequency and corresponding 

mode of motion. Also by matching the amplitude ratios of the rocking resonance frequency and its 

doubled of simulation to the experimental ones the leaning angles of whirling particles can be 

approximated. 
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Figure 3. Comparisons of experimental spectral responses of the substrate (solid thin lines) and particle (dashed thick line) with those 

computationally obtained from the integration of the proposed model (dot-dashed thin line) 
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Abstract: We study nonlinear transmission of energy in a finite dissipative periodic structure, forced outside
the linear wave transmission spectrum (the pass band). There exists a threshold for the driving amplitude above
which a sudden increase occurs in the energy transmitted to the other end of the finite structure. The mechanism
responsible for this steady nonlinear transmission is explained, and its connection to the resonance of the driving
forcing with the shifted pass band is discussed.

Introduction: The vibrations of periodic structures is very well understood for small-amplitude motions; i.e. in the
linear operating range [1]. Due to their dispersive nature, periodic structures attenuate any wave with a frequency
component that is outside a particular frequency range known as the pass band. Waves with frequency components
within the pass band can propagate freely through an undamped periodic structure.

It is known that if the amplitude of the driving force is large enough, energy transmission is possible even when the
driving frequency is outside the pass band [2, 3]. This nonlinear energy transmission is accompanied by a large increase
in the energy flux throughout the structure. This is clearly in contrast with the linear response of the structure.

Nonlinear transmission of energy from excitations outside the pass band has been predominantly studied in the
physics literature, for non-dissipative and infinitely-long systems with governing equations that are not common in
engineering applications; e.g. Morse potentials and FPU chains. In contrast, engineering structures inevitably possess
some form of damping and have finite length. Dissipation results in spatial attenuation of waves even within the pass
band and finite size results in reflection of waves from the boundaries.

In this work, we study energy transmission in a dissipative nonlinear periodic structure of finite length, driven
harmonically at one end with a frequency outside the pass band. We demonstrate, using numerical computations,
that nonlinear transmission of energy is possible even in short (six units) and dissipative periodic structures. Thus we
show the relevance of this nonlinear phenomenon to engineering applications.

The mechanical system: The periodic structure consists of six weakly-coupled identical units. Each unit is made
of a hanging cantilever vibrating in its fundamental mode shape, with the first beam excited at its base – see Figure
1. Nonlinear forces are introduced in each unit by the magnetic force between two electromagnets and a permanent
magnet placed at the tip of each cantilever. These forces are tuneable, making it possible to realize different types
of nonlinearities. The governing equations have nonlinearities that are relevant in engineering applications. In this
abstract, we only present the results for softening cubic nonlinearity. Experimental validation of the results will be
presented in the future.

Results: The nonlinear transmission phenomenon is shown here for a fixed forcing frequency, Ω, chosen below the
pass band of the finite structure. For a chosen driving amplitude, F , the governing equations are solved for long time
periods, and the average energy in the last unit, E6, is calculated. Figure 2(a) shows E6 as a function of F . We can
see a threshold around F = 0.02 above which there is a sudden increase in the energy at the end of the structure.

The frequency components of the response at the first and last units are shown for two cases: (1) F = 0.19,
below the transmission threshold, in Figure 2(b); (2) F = 0.21, above the threshold, in Figure 2(c). We can see in
Figure 2(b) that the driving frequency (Ω = 0.85) is the predominant frequency component throughout the structure
below the threshold. Above the threshold, Figure 2(c), the driven unit moves with a high amplitude and its response
is highly nonlinear. Due to increased amplitude of motion, the pass band of the periodic structure shifts to lower
frequencies [4] and the driving force resonates with the shifted pass band. This results in excitation of the spatially-
extended propagating waves of the system. As these waves move through the structure their amplitude decrease
due to dispersion and dissipation, and their frequencies change accordingly. Figure 2(c) shows that the frequencies
of the transmitted waves are predominantly within the pass band of the linear structure, with a small component
corresponding to the driving frequency.

We will further show that as the forcing frequency moves farther from the linear pass band of the structure, the
tranmission threshold increases. Qualitatively, this can be explained by the resonance of the driving force with the
shifted pass band of the structure. The shift in the pass band can be calculated by considering the natural frequencies
of its repeating unit. We will discuss the relation between the pass band resonance and transmission threshold, and
compare with infinite undamped systems. In addition, we will discuss the influence of damping on the transmission
threshold. Finally, results for the case of hardening nonlinearity will be presented as well.
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Summary: It is possible to transfer energy steadily through a short dissipative periodic structure by driving it with
a frequency outside its pass band. This happens due to the dependence of the dispersion characteristics of nonlinear
periodic structures on the amplitude of motion. The spectrum of the transmitted waves is mainly within the linear
pass band of the finite periodic structure, with a small component corresponding to the driving frequency.
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Figure 1: The schematic of the first unit of the mechanical setup. The first beam is harmonically excited at its base
with frequency Ω and amplitude A; for other units A = 0. PM is the permanent magnet placed at the tip of the beam.
EM1 and EM2 are the two DC electromagnets. u(t) denotes the horizontal displacement of the tip of the beam. The
effective driving force acting on the tip of the beam has an amplitude F proportional to A.

Figure 2: (a) Energy transmitted to the end of the structure, E6, as a function of the forcing amplitude, F . Energy is

normalized to compensate for the increase in response amplitude, u6(t), due to increase in F . E6 =
∫

(u6(t)/F )
2
dt.

(b) Frequency components of the first unit (U1) and last unit (U6) for case 1: F = 0.19, below the transmission
threshold. The dashed vertical lines indicate the linear pass band of the structure. (c) Same as (b), but for case 2:
F = 0.21, above the transmission threshold.
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Abstract: 
Laterally driven microstructures have played an 

important role in many micro-actuators and 

micro-sensors. In these devices, the damping level 

determines their amplitude response and stability, 

and therefore is a crucial parameter to their 

functionality. In contrast to vertically driven 

devices, in which squeeze film damping is the 

major source of energy dissipation, viscous drag 

of the ambient fluid is the dominant dissipative 

source in laterally driven structures. 

Most of the studies on air damping conducted in 

the past have employed continuum models .These 

models are adequate for air in a device that has a 

minimum feature size on the order of microns or 

larger and is operated at around atmospheric 

pressure. Some examples for such devices are 

accelerometers and gyroscopes. However, there 

are cases in which continuum theory may fail to 

give a good prediction, for example, micro 

resonators operated in a low vacuum such as 

comb-drive resonators. 

The parameter that determines the degree of 

rarefaction and the validity of the continuum 

model is Knudsen number (Kn) which is defined 

as the ratio of the mean free path of the gas 

molecule to the characteristic length of the flow. 

While Kn ≤ 0. 01 the regime is Continuum, and in  

situation of 0.01 ≤ Kn≤ 0.1 there is slip regime. 

In the Continuum Regime, the Navier-Stokes 

equations with no-slip boundary conditions can be 

used to determine fluid flow behavior. For the 

Slip Regime, the Navier-Stokes equations can 

also be used, but slip boundary conditions are 

necessary since Increment of the ratio of the mean 

free path to the characteristic length could result 

in difference between velocity of the fluid at the 

contact surface and the velocity of the surface 

itself, or there may be a delay in response of 

motion of the fluid to the motion of surface. 

There are several researches that investigate air 

damping in continuum regime. However, air 

damping in slip regime has been seldom studied 

exclusively.  

In this work, there is a tendency to study the air 

damping of laterally oscillating micro plate 

considering slip boundary conditions on the other 

hand the damping effect of the micro-plate with 

considerable gap size which resulted in Knudsen 

numbers less than 0.01 considering no slip 

boundary conditions has been  investigated. 

This paper deals with the analysis of viscous air 

damping of laterally moving plate. Logistic 

simplifications have been done on general Navier-

Stokes equation in order to gain appropriate 

equation for the model. The oscillation of the 

structure has been presented in equation form 

with participation of fluid effects and slip 

boundary conditions. Thence the coupled 

governing partial differential equations of lateral 

vibration of the moving plate and fluid field have 

been derived. The obtained equations have been 

discretized over the beam’s domain and fluid 

domains using a Galerkin based reduced order 

model. Eventually the effects of viscosity of the 

surrounding fluid and geometrical parameters of 

the oscillating structures such as length, thickness 

and gap size on the quality factor have been 

investigated. 

It could be deduced from the investigation that 

increasing the gap size resulted in diminished 

damping ratio and high quality factor. It is 

because increasing the distance between micro-

plate and fixed substrates results in smaller shear 

force acted on the micro-plate surface. 

On the other hand the increment of the micro-

beam thickness, due to growth of stiffness led to 

lower damping ratios resulted and high quality 

factors. 

Since increasing temperature leads to higher 

viscosity of the surrounding fluid and greater 

amount of shear force, by rise in temperature 

values higher damping effects and lower quality 

factor observed. 

Also because of increased solid liquid interfaces 

which results in higher damping by increasing the 

length of the micro-plate the quality factor is 

decreased.  

 



(a) slip boundary conditions 

 

 

 

 

B) No slip boundary condition 
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We recently concluded an extensive project for the Defense Advanced Research Project 

Agency (DARPA), as part of their Structural Logic Program, demonstrating the feasibility of 

simultaneously and significantly increasing the stiffness and damping of an existing structure under 

various types of dynamic loading over a broad range of frequencies using fully passive, essentially 

nonlinear attachments; i.e., nonlinear energy sinks (NESs) [1].  The goal of the project was to 

develop a strategy to passively protect large-scale structures and systems from broadband transient 

loads applied directly to the structure or through ground motion; e.g., blasts, collisions, gusts, and 

other pulse-dominated loads.  The addition of NESs to buildings had been proposed as a means to 

rapidly and passively dissipate the energy in a system subjected to impulsive loading. This rapid 

dissipation occurs because the essential nonlinearity of the NES allows it to resonate with one or 

more modes of the structure and engage in targeted energy transfer, the nearly one way transfer of 

energy to the NES where it is locally dissipated [2]. Additionally, the NES couples the modes of the 

structure and facilitates the transfer of energy from lower to higher modes of the structure where it 

can be dissipated at a faster time scale. 

A large-scale 9-story steel structure, constructed specifically for the DARPA project, was 

employed as the test-bed for this work.  This test structure, which is shown in Figure 1, is 5.13 m 

tall and has a mass of approximately 11,000 kg.  The structure is composed of a steel base plate and 

nine 2.74 m by 1.22 m steel floor plates connected together by high strength steel columns.  The top 

two floors of this structure have cutouts in them to accommodate a total of six NESs within the 

floors, making the resulting designs non-parasitic. 

 

 
Figure 1. Base structure, NESs positioned in the floor plate, and conceptual models of the NES 

types employed 
 

The system of NESs built into this large-scale structure consists of a combination of four Type-I 

NESs and two single-sided vibro-impact NESs (SSVI NESs).  Conceptual models of these NESs 

are shown in Figure 1.  The conceptual model of the Type I NES is composed of a mass connected 

to a primary structure through a viscous damping element and a smooth (no discontinuities in the 
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restoring force) essentially nonlinear spring element.  This smooth essential nonlinearity allows this 

device to resonate with and participate in the transfer of energy with any mode or a sequence of 

modes of the primary structure.  The conceptual model of the SSVI NES consists of a mass attached 

to a primary structure through a viscous damping element and a linear spring element; for this type 

of NES the relative displacement of the mass is limited on one side by an impact surface that is 

connected to the primary structure.  Due to the discontinuity in restoring force, these impacts are 

broadband events, and because of them energy is scattered throughout the structure, principally to 

its higher modes [3].  The properties of these NESs were designed using computational simulations 

with the goal of mitigating the response of the structure when subjected to a shock-type blast 

loading. 

While not the principal focus of the original project, the system of NESs was also evaluated, 

both computationally and experimentally, to assess its ability to mitigate the effects of earthquake 

loading.  To accomplish this, the structure-NES system was assembled on a large scale hydraulic 

shaker located at the US Army Corps of Engineers Construction Engineering Research Laboratory 

in Champaign, Illinois and subsequently subjected to a series of historic seismic ground motions.  

Figure 2 provides an example of the results of this experimental work, showing the response of the 

structure with the system of NESs locked and unlocked to a scaled version of the JMA station 

record from the 1995 Kobe earthquake.   The passive adaptivity of the NESs is evident in these 

results, as the performance of the protective system, which includes a significant reduction of the 

peak strain measured at the structure’s first story columns, was outstanding when subjected to a 

loading it was not designed for.  Figure 3 shows the resulting first mode effective damping [4] 

determined from the structural response to a range of scaled levels of the 1995 Kobe earthquake 

with the system of NESs locked, unlocked, and partially unlocked.  The synergy between the types 

of NESs is demonstrated with all NESs unlocked, as in this case a high level of first mode effective 

damping is relatively consistent across all ground motion amplitudes considered. 

 

 
Figure 2.  First floor column strain response to 1995 Kobe earthquake NESs locked (left) and NESs 

unlocked (right)   

 

 
Figure 3.  First mode effective damping 
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The stiffness effect of a non-contact excitation system in Oberst beam method has been investigated 

recently [1-3]. In this study, the stiffness effect of a non-contact excitation is studied for various types 

of samples including a few damped beams which are treated with two different viscoelastic materials 

(A and B). Furthermore, the damping effect of the non-contact excitation system is also investigated. 

Two ‘identical’ beams treated with material A are intentionally prepared to verify the results. The 

Oberst test rig is shown in Fig. 1 where L is beam length and ∆ is the length of beam exposed to the 

electromagnetic field. Here, the electromagnetic effect is varied by changing the ∆ parameter. In these 

tests, the transfer functions in mobility format, i.e. ( ) ( ) ( )H V Fω ω ω=% % %  are measured on samples 

where ‘V’ is the velocity, ‘F’ is the excitation force, ω is the excitation frequency and superscript ~ 

implies a complex valued quantity. The natural frequencies (fr) and loss factors (ηr) of the samples are 

then identified using the so-called line-fit method. 

 
Fig. 1. The Oberst test rig including non-contact excitation system. 

 

The identified first four natural frequencies of the test samples are presented in Fig. 2. It is seen that the 

stiffening effect of the excitation system is quite nonlinear though the stiffness effect of the excitation 

system has been modelled using a linear spring attached to the free end of the beam in Ref. [3]. 

             

            
Fig. 2. The identified natural frequencies of the bare and the beams treated with damping materials A and B. 
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The identified first four modal loss factors for the test samples are presented in Fig. 3. Although the 

first modal loss factors are also included in Fig. 3, it should be noted that the first mode is not 

recommended to be used for identification of material properties. Therefore, the higher deviation in the 

first modal loss factor is expected due to the difficulties in identification of modal loss factor for this 

mode. In contrast to the trend observed for the identified natural frequencies, there is no consistent 

increase (or decrease) for the identified modal loss factors with respect to the ∆ parameter. It can be 

said that the modal loss factors do not change significantly as electromagnetic field increases although 

there are some small variations due to the nature of damping, precision of line-fit method, the stiffening 

effect, etc. Overall, it can be said that the additional damping effect of the non-contact excitation 

system in the Oberst test rig is negligible. 

                

                  
Fig. 3. The identified modal loss factors of the bare, the beams treated with damping materials A and B. 

 

The variation of the first natural frequency as a function of the ∆ parameter is approximated using a 

second order polynomial as f1 = 0.41∆
2
 - 1.64∆ + 22.65 for the bare beam where R² = 0.993, f1 = 0.43∆

2
 

- 1.29∆ + 20.40 for the beam treated with damping material A where R² = 0.999 and f1 = 0.33∆
2
 - 1.22∆ 

+ 19.65 for the beam treated with damping material B where R² = 0.985. The fitted polynomials for the 

second natural frequencies for different beams are as f2 = 0.17∆
2
 - 0.92∆ + 123.88 for the bare beam 

where R² = 0.980, f2 = 0.25∆
2
 - 1.29∆ + 110.67 for the beam treated with damping material A where R² 

= 0.983 and f2 = 0.14∆
2
 - 0.71∆ + 121.09 for the beam treated with damping material B where R² = 

0.936. Similarly, the fitted polynomials for the third natural frequencies for different beams are: f3 = 

0.076∆
2
 - 0.36∆ + 344.87 for the bare beam where R² = 0.980 and f3 = 0.11∆

2
 - 0.49∆ + 305.98 for the 

beam treated with damping material A where R² = 0.972. It is clearly seen that the contribution of the 

nonlinear term decreases as the mode number increases for all test samples considered here. One reason 

for this trend is that the natural frequencies of lower modes are more sensitive to the tip stiffness caused 

by electromagnetic effect. The other reason is due to the higher tip deflections of the beams at lower 

modes causing higher levels of stiffening effect for a nonlinear spring. 
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Phase Space Distribution Near Self-Excited Oscillation Threshold 

Yuvaraj Dhayalan, Ilya Baskin, Keren Shlomi and Eyal Buks 

Department of Electrical Engineering, Technion, Haifa 32000 Israel 

We study phase space distribution of an optomechanical cavity near the threshold of self-excited 

oscillation [1]. A fully on-fiber optomechanical cavity is fabricated by patterning a suspended metallic 

mirror on the tip of the fiber. Optically induced self-excited oscillation of the suspended mirror is 

observed above a threshold value of the injected laser power (see Fig. 1). A theoretical analysis based on 

Fokker-Planck equation evaluates the expected phase space distribution near threshold. A tomography 

technique is employed for extracting phase space distribution from the measured reflected optical 

power vs. time in steady state. Comparison between theory and experimental results allows the 

extraction of the device parameters (see Fig. 2). 

 

 

Figure 1: An on-fiber optomechanical cavity is 

excited by a laser. The reflected light intensity is 

measured and analyzed. The inset shows a typical 

trace of the photodetector voltage vs. time 

measured by the oscilloscope above self-excited 

oscillation threshold. 

Figure 2: The dependence on laser power. (a) 

Phase space distribution extracted from the 

measured probability distribution function using 

tomography. (b) Phase space distribution 

calculated from steady state solution of Fokker-

Planck equation. 

 

[1] Yuvaraj Dhayalan, Ilya Baskin, Keren Shlomi and Eyal Buks, Phys. Rev. Lett. (in press), 

arXiv:1312.6372. 
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ON A NONLINEAR ENERGY SINK CONTROL (NES) APPROACH, APPLIED TO AN 

ELECTRO PENDULUM ARM, LIKE DEVICE 

G. Füsun Alışverişçi(1) , Hüseyin Bayıroğlu(1) , Jorge Luis Palacios Felix(2), José M. Balthazar(3), 
Reyolando Manoel Lopes Rebello da Fonseca Brasil(4) 

(1)
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(2)
Universidade Federal do Pampa-UNIPAMPA, Alegrete, RS, Brasil 

 (3)
Universidade Estadual Paulista-UNESP, Rio Claro, RS, Brasil 

(4)Universidade Federal do ABC, Santo André, SP, Brasil    
 

This paper deals with a thin rod interdependent with a plate, on which electrical windings are applied. 
Connected to an electric circuit ([2]), its oscillations are due to the electromagnetic force, resulting from 
two identical and repulsive permanent magnets [1]. Also a NES (Nonlinear Energy Sink, [2], [3], [4], 
[5]]) device is put on the free end of the pendulum. (Fig.1).This set-up is a system with three degrees of 

freedom: (i) the charge q of the nonlinear condenser (ii) the angular displacement θ  of the pendulum, 

(iii) the displacement z of the nesM  (controlling the pendulum vibrations). We announced that the 

numerical results, obtained were showed, next: in the bifurcation diagram -Fig.2a, Poincare map in the 
Fig.2b and Lyapunov Exponents in the Fig3. In Fig. 2, we can see that the action of the (NES) decreases 
the amplitude for n=3. In Fig. 2 and Fig.3, we can show that (NES) increased the nonlinear effect, for 
n=3. 

 

Figure 1. This is an idealization of a NES applied to a pendulum arm 

The  governing  equations of motion ,will be of the form : 
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ABSTRACT 
Vibration-based condition monitoring and fault diagnosis is a most effective approach to maintain the safe 

and reliable operation of rotating machinery. Unfortunately, the vibration signal always exhibits non-linear 

and non-stationary characteristics, which makes vibration signal analysis and fault feature extraction very 

difficult. To extract the raw data Fourier transform is done to find out which component has the dominant 

vibration characteristic. The objective of this paper is to monitor the instantaneous vibrations for a 1000 HP 

engine which has a redesign highly loaded compressors. The test is conducted in three parts with different 

rotational speed levels namely; crank, idle and performance cycles. Order analysis is done to find out the 

cause of vibrations on the engine. 
 

Keywords: Vibration Monitoring, Order Analysis, Rotating Machinery. 

 

INTRODUCTION 

The internal components of gas turbine engines operate under extreme conditions of high stress 
and temperatures. The main working surfaces inside the engine encountering these conditions are 
the multiple rotor and stator blade rows. In aero engines and other rotating machines, these 
components are influenced by dynamic effects of unbalance, misalignment, mechanical looseness, 
structural resonance and shaft bending [1].  

When performing vibration testing, the instrumentation required depends on the application, 
location and purpose. For instance, eddy current proximity probes are used to measure the shaft 
vibrations in displacement relative to the bearing housing in mils [2]. Vibration data was measured 
to benchmark a 120 MW turbine generator to verify the peak responses on critical speeds with 90° 
eddy current probes [2]. This turbine generator was consisted of a high pressure rotor, a low 
pressure rotor and a generator rotor. The whole system was supported on six bearings. The 
vibration characteristics at partial load conditions on bearings were investigated. Velocity sensors 
are used to measure vibrations in velocity [m/s]. The vibration disturbance effect of a new 25 MW 
turbine-generator plant on a campus was investigated [3]. The measurements were taken at critical 
speeds with velocity sensors. According to the peak vibration locations, spring isolators and 
viscous dampers were designed. Piezoelectric accelerometers are used to measure vibration on 
the bearing houses and casings which measure the total vibration in g. They are capable of 
covering large frequency bandwidths, typically up to 10 kHz or higher, enabled by the typical 
resonant frequency of the accelerometers being on the order of 50 kHz [4]. A test rig was built for 
bearing and gears to identify diagnostics of rotating machinery in time domain and in order 
spectrum of the signal [5]. An accelerometer was mounted on the top surfaces of the housing of 
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the cylindrical roller bearing. The sensor had a measurement band ranging from 0.5 Hz to 10 kHz. 
Order tracking method was used for vibration measurement that is a key step for bearing and gear 
diagnostics because it corrects the variablity of speed due to fluctuations [6]. A new order tracking 
method was established for large speed variations. The measurements were taken with an 
accelerometer mounted on the bearing housing of the input shaft. The sampling frequency was 10 
kHz during the experiment. This method is developed to estimate the instantaneous frequency of a 
certain harmonic of rotating frequency by extracting its waveform from overall signal.  

In large rotating machines, it is difficult to make fault diagnosis process form overall vibration data. 
A new method has a single composite spectrum using all the measured vibration data [7]. A test rig 
was built up for three different faulty cases; misallignment, crack shaft and shaft rub. The test rig 
was excited by an instrumented hammer and vibration responses were measured by 
accelerometers along the length of the shafts. In another study a new transform method is 
developed to transform the time domain into order spectrum [8]. Three different test rig was used 
to obtain vibration data. First rig is designed for testing gears and bearings. Two identical 
accelerometers are mounted on the housing of the bearing and the tests are made at different 
shaft speeds. Second rig consists of three discs on a shaft that mounted on two bushings. Two 
proximity sensors are installed on bushing house to measure radial displacements. Final 
measurements are taken from a Kaplan turbine for hydrolic instabilities. Proximities are used for 
vibration measurements. With this new transform vibration levels of significant orders are obtained 
from overall vibrations. Order spectogram anaylsis is done to understand the health diagnosis of 
rotating machines under different speed conditions [9]. Vibration signals are measured on two 
types of bearing; outer and inner raceway defect of a ball bearing. Measurements are taken from 
the bearing casing with an accelerometer. This type of analysis was %20-%30 more effective in 
investigating defects in the rolling bearing under varying speed conditions.  

Torsional vibration on a blade disc with eight rectangular is investigated at healthy and fault 
conditions on a test rig [10]. The accelerometers were mounted on the bearing housing. The 
experiments were conducted at different shaft speeds. It is been found that healty blade case gives 
a banded peak, however multiple peaks for cracked blade. External accelerometer on the casing of 
a gas turbine is used for blade vibration measurements. In a turbine test rig, it is assumed that the 
turbine casing vibration response could provide a means of blade condition monitoring [11]. It is 
believed that the high and low pressure forces excites the casing surface. The results obtained for 
measured casing vibrations is essentially the same as for the internal pressure signal, with the 
pressure force passing through the time. However in this case the measurement and interpretation 
of the pressure signal is less complex than the casing vibration response measurements. 
Conversely in practice, the ease of making pressure measurements is much less than for 
accelerometer measurements, since pressure transducers require perforation of the casing and 
operate in a much harsher environment. 

When focusing on vibration response of rotating blades, it is easy to predict the resonance 
frequency; however difficulty remain in the prediction of vibrational stress [12, 13]. The dynamic 
stress caused by aerodynamic excitations in the rotating direction is measured with strain gage 
installations using a slip ring system [14]. This setup system is used to study blade vibrations using 
a remote sensing system via a set of strain gages bonded to one of the blades. An experimental 
investigation by means of holographic interferometry and telemetry involving the use of applied 
strain gages were carried out for impeller vibrations [15]. With this method it is possible to 
determine the mode shapes of a vibrating body. In contrast to the strain gage technique, this 
method provides information over the entire surface of the body under investigation, from which the 
amplitude distribution may be determined. This is especially advantageous in the case of the 
complex geometrical structures under investigation, as it is possible to identify a mode shape 
relatively quickly. 

In vibration testing one of the main concerns in the measurement of the forced response of 
vibrating structures is the coupling between the test article and the exciter. When the structural 
behaviour of the structure is linear the resonant frequencies and mode shapes are obtained with a 
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hammer test [16]. Unfortunately, real applications of structures are connected with joints where the 
behaviour become nonlinear. These joints significantly change the dynamic behaviour of the 
engine. The dynamic responses of the components can be investigated in engine ground tests 
where the rotor is subjected to an excitation pattern where each blade is loaded with a series of 
pulses within a complete disk rotation. The number and the intensity of pulses depend on the 
components of the engine preceding the rotor (number of combustion chambers, stages, stator 
vanes) and the wide spectral content is usually characterized by several harmonic components 
whose excitation frequencies are mainly a multiple of the rotor angular speed. The harmonic index 
which defines the multiplicity is called engine order [17]. In this paper the newly designed high 
loaded compressor  overall vibrations are monitored with time. Afterwards an order analysis is 
done and critical engine orders are investigated to find out the cause of the vibrations.  

EXPERIMENTAL SETUP AND TEST CONDITIONS 
The objective of this study is to monitor the vibration characteristics in real time on nine stage high 
loaded compressors in order to prevent the failure of engine and vibration analysis. The newly 
designed compressor is shown in Figure 1 below. 

 
Figure 1 Nine Stage Compressor Module 

The vibration measurements are performed by using accelerometers which are capable of 
measuring a range of up to 50 g at steady conditions and 500 g peak to peak variation. The 
maximum frequency limit is 36000 Hz [(23365/60)*92]. This limit meets with both frequency range 
and resonant frequency of the accelerometer.  

A general view of the engine is shown in Figure 2. Accelerometers are placed on the engine 
considering four different places. One of the measurements is taken from the entrance of the 
compressor in radial direction. Two accelerometers are mounted on the combustor casing to 
measure from both radial and axial direction. The last measurement is taken from the entrance of 
the turbine in radial direction.  

 

Figure 2 General View of the Engine 

Overall vibration is monitored per one second during the tests. Two different RPM is measured 
from the compressor and power turbine. Order analysis is done in order to find out the source of 
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the vibration whether from power turbine or compressor. In Table 1 the blade passing frequencies 
in each compressor cascade is defined.  
 

Table 1 Compressor Blade Passing Frequencies 

Rotor Number Frequency (kHz) 

1 15  

2 16  

3 19  

4 23 

5 27 

6 32 

7 34 

8 35 

9 36 

 
Bearing related vibrations are also taken into consideration. First three bearings mount the 
compressor. Fourth and fifth bearings mount the power turbine. In Table 2 the ball number of  the 
bearings are shown. These numbers are important for order analysis. 
 

Table 2 Bearing Ball Numbers 

Bearing Number Ball Number 

1 14 

2 13 

3 20 

4 20 

5 11 

 
TEST RESULTS 

 
Crank Test 
In order to check the accuracy of the sensors and understand engine behavior characteristics, 
without combustion, rotor is started with an electric starter. As seen below in Figure 3.the 
instantaneous vibration indicates there is no sudden excitation that affects engine.  
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Figure 3 Crank Test Overall Vibrations  

Idle Test 
Idle test is where combustion takes places and power turbine reaches to its idle speed, N1 rpm, 
and works for some time. After the time period working at N1 rpm passes on N2 rpm and is ready 
for loading. In Figure 4 engine is operated at idle speed and overall vibration data are collected. It 
is seen that as the speed increases dominant vibration occurs at entrance of the turbine in radial 
direction.  

 

 
Figure 4 Idle Test Overall Vibrations 

Performance Test 
to determine the performance of the gas turbine the engine is loaded by using a electircal load unit 
at the level of 100-150-200-259 kW.   
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As seen in Figure 5, after the load is applied, combustor casing vibration is surprassed by 
compressor inlet vibrations. the compressor is mounted with three bearings so the speed 
increases, the temperature also increases on bearings. This effects the bearings and the vibration 
becomes dominant in this region. 

Figure 5 shows that the lowest vibration comes from the compressor. The highest vibration comes 
from turbine. In order to understand which component causes the vibration order analysis is done 
for power turbine and the results are shown in Figure 6. 

 

 

 
Figure 5 Performance Test Overall Vibrations 

 
Figure 6 shows the critical components of the engine as described in Table 1 and Table 2. As expected from 

a rotating machine is that highest vibrations are occured in the 1
st engine order. The other components 

have no influence to vibration. 1st engine order describes unbalance. The figure also shows that 
bearings works well and vibrations is not at its critical point.  
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Figure 6 Order Analysis of the Measurement 

1st 

The most critical part is the first rotor of the engine as seen in Figure 6 at 37th order. Since the 
loading started, rotor vibrations increases in the first cascade. Rotor vibrations decreases when the 
loading is undone. Although the vibration limits are not exceeded, this incremental vibration may be 
a problem when to produce more power.  
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Extended Abstract

Problem Statement. Helicopter Ground Resonance (HGR) [1, 2] is a dynamic instability involving the
coupling of the blades motion in the rotational plane (i.e. the lag motion) and the motion of the fuselage. HGR
can be very violent and can lead to the total destruction of the aircraft. The present work is a preliminary study
of the capacity of a passive nonlinear absorber (or Nonlinear Energy Sink (NES)) to control an HGR.

Framework. In the domain of passive control vibration, it has been shown that the use of a NES can provide
very interesting results. Under certain conditions an irreversible energy transfert from the primary system to
the NES can occur. This phenomenon is called Targeted Energy Transfert (TET). In their seminal paper [3],
Gendelman et al. analyze TET in term of resonance capture and nonlinear modes. More recent works show that
the use of NES is also an interesting way to control dynamic instabilities. For instance, Lee et al. [4] show that a
NES coupled to a wing in subsonic flow can partially or even completely suppress flutter instability by TET
from the wing to the NES.

The simpler helicopter model that can describe HGR is well known. It involves only lag motion of the four
blades and one direction of the fuselage motion. Linear stability of this model shows that HGR is due to a
frequency coalescence between a lag mode and the fuselage mode and predicts the range of rotors speeds Ω
for which this frequency coalescence occurs. In this work a NES is coupled to the fuselage in an ungrounded
configuration (see Fig. 1). The differential equations which govern the time evolution of the fuselage displacement
y(t), the NES displacement h(t) and the blades lagging angles δi(t) (with i ∈ [1, 4]) can be easily derived using
Lagrange’s equations. These equations of motion are:



(M + 4mδ) ÿ + cy ẏ + kyy + µ(ẏ − ḣ) + α(y − h)3

+mδ

4∑
i=1

{
Lδ̈i cos (ψi + δi)− L

(
Ω + δ̇i

)2
sin (ψi + δi)

}
= 0 (1a)

mhḧ+ µ(ḣ− ẏ) + α(h− y)3 = 0. (1b)
mδL

2δ̈i + cδ δ̇i + kδδi +mδLÿ cos (ψi + δi) = 0 (1c)

with ψi = Ωt− 2π
i− 1

N
,

where N = 4 is number of blades, M is the mass of the fuselage, mδ is the mass of one blade, mh is the mass of
the NES (M > mh), cy, cδ and µ are damping coefficients, ky and kδ are linear stiffness coefficients and α is the
cubic stiffness coefficient of the NES.

Results. Numerical parametric investigation of the system of equations (1) is performed. It consists to
determine the possible regimes in the parameter space. We show that it is possible to partially or even completely
suppress HGR by passively transferring energy from the fuselage to the NES. As in [4], three responses for
the fuselage motion are highlighted: strongly modulated response (SMR), partial suppression and complete
suppression of the HGR. An example of SMR is depicted in Fig. 2.

We are currently working on the design of the NES. The aim is to know if the NES parameters leading to a
good control of the HGR are compatible with industrial applications.

1
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Figure 1: Schematic representation of the studied system.
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Figure 2: (a) Comparison between the fuselage motion without NES yp(t) (red line) and the fuselage motion
with NES y(t) (blue line). (b) Comparison between the NES motion h(t) (magenta line) and the fuselage motion
with NES y(t) (blue line).
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Summary. In order to investigate the collective nonlinear dynamics of an array of coupled pendulums under simultaneous external
and parametric excitations, a computational model is developed while considering the main sources of nonlinearities. The equations
of motion are solved using the harmonic balance method (HBM) coupled with the asymptotic numerical method (ANM). Numerical
simulations are performed in the case of two coupled pendulums in order to investigate the complexity of the frequency responses in
terms of bifurcation topologies and energy transfer.

Introduction

The sine-Gordon model and its discrete analog have attracted interest of people working in quite different fields. For
instance, the collective dynamical behavior of an array of coupled pendulums with a small fraction of random long-
range connection has been investigated under external excitation [1, 2]. Gavielides et al. [3] have investigated the effect of
impurity introduced into a lattice and their ability to control the dynamic behavior of an array of coupled nonlinear chaotic
oscillators, while Thakur et al. [4] have examined a pendulum array with harmonic coupling and horizontal sinusoidal
driving. Hai-Qing et al. [5] and Alexeeva et al. [6] demonstrated the stabilizing effect of adding mass and length impurities
on a chain of pendulums parametrically excited. In this context, a computational model for the nonlinear dynamics of a
chain of coupled pendulums under simultaneous external and parametric excitations is developed. The principal goal is to
track the collective dynamics of the considered system in terms of bifurcation topologies and energy transfer with respect
to the excitation amplitudes.

Design and model

The considered system is depicted in Figure 1. It is composed of an horizontal axle A, of total length l, suspended at its
ends by "frictionless" bearings. Along this axle, at equally spaced intervals, there areN equal pendulums. Each pendulum
consists of a rigid rod, attached perpendicularly to the axle, with a mass at the end. At rest, all the pendulums point down
the vertical, a is the distance of the center of mass from the central axis, g the gravity acceleration, θi is the angle between
the ith pendulum and the downward vertical, k2 is the torque constant and k4 is the coupling nonlinear stiffness. The
pendulums have the same moment of inertia I = ml2. The considered system is excited by two excitation forces at the
drive frequency ωe. The first one is an external force F cos(ωet) applied on one or several pendulums, and a parametric
excitation 4Aeωe

2 cos(2ωet) due to the base excitation of the system. Hence, the equation of motion of the nth pendulum
can be written as:

ml2 d
2θn
dt2 + αl dθndt + k2 (2θn − θn+1 − θn−1) + k4

(
(θn − θn+1)

3
+ (θn − θn−1)

3
)

+ml
[
g + 4Aeω

2
e cos (2ωet)

]
sin (θn) = Fcos(ωet)

(1)

The boundary conditions associated to Equation (1) are θ0 = 0 and θN+1 = 0. First, sin (θn) is expanded in Taylor series
up to the third order. Then, the resulting equation is numerically solved in the frequency domain using the harmonic
balance method coupled with the asymptotic numerical continuation technique.

Numerical simulations

In order to investigate the effect of adding an external force, we plot numerically the frequency responses for an array of
two coupled pendulums. In the case of a pure parametric excitation (F = 0), the two curves of θ1 and θ2 are identical due
to the symmetry of the equations, as shown in Figure 2(a). Moreover, we notice that the resonant stable solution is limited
to the frequency range [10.29 10.77] rad/s while the trivial solution θn = 0 is anywhere else. Figure 2(b) displays the
frequency responses of the two pendulums under simultaneous external and parametric excitations. Remarkably, adding a

Figure 1: An array of coupled pendulums under simultaneous parametric and external excitations.
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(a) (b)

(c)

Figure 2: Forced frequency responses of the two coupled pendulums for the following set of parameters: m = 0.1, l = 0.1, g =
9.81, A = 0.004, k2 = 0.01, k4 = 0.005, α = 0.001, F = 10−6. (a): under pure parametric excitation (F = 0), (b): under
simultaneous parametric and external excitations, and (c): the two pendulums are excited with the same parametric force while only
the first pendulum is externally forced. Solid curves indicate stable solutions and dashed curves indicate unstable solutions.

small external force has an impact only on the unstable solution. Finally, we perform numerical simulations for the case of
simultaneous excitations while the external one is localized on the first pendulum. Since the symmetry of the problem is
broken, there are large differences between the two frequency responses as shown in Figure 2(c). For ωe > 10.85 rad/s,
a new branch is added providing a non-zero solution and compared to the two first cases, we can see the existence of new
stable branches for ωe < 10.85 rad/s.

Conclusions

A computational model for the nonlinear dynamics of an array of coupled pendulums under simultaneous parametric
and external excitations has been developed. Particularly, it is shown that we can take advantage of the external force to
stabilize the structure and increase the performances of the resulting collective dynamics.
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Abstract

We analyse the stability of a heavy inextensible cable traveling at constant velocity at an angle
against gravity. The governing equation for transverse in-plane vibrations are derived using
Newton’s second law or Hamilton’s principle. Modal and transient solutions are obtained
computationally at different velocities of operation and inclination angle. The margin of
stability is identified from the critical values of the velocity. This margin will be validated
with simple lab-scale experiments. Further, energy balance confirms that the system’s energy
in absence of dissipative forces is not constant; indicating that the system is nonconservative.
Effects of external damping on the stability of the system is also analysed.

1 Introduction
TRAVELING CABLES are often used to drive mechanisms such as elevators in skyscrapers and mines (ground and underwater), conveyor belts, automobile chain-drive, cableways, etc. These cables can be inclined at various angles togravity. Understanding the dynamics of cables employed in these application is important to arrive at the criticalspeed of operation for designing proper control systems. Dynamics of horizontally traveling strings, or cables, andbeams is well addressed in available literatures, [1]-[9]. We study the dynamics of a cable moving at constant velocitybetween fixed rollers and inclined with respect to the vertical. Such a system has been sparsely investigated before.We establish criterion for instability by looking for the system’s critical velocity using computational modal andtransient analyses. We are attempting to validate these critical points via simple experiments. Through energeticswe justify that the system’s stability, in presence or absence of damping, is not sufficiently characterized by itsnonzero energy rate. Wickert and Mote [9] reached a similar conclusion for a horizontal system. Our basic modelincludes external loading, due to aerodynamic/hydrodynamic forces along with gravity.
2 Governing equation and numerical solution
A traveling heavy cable between two pairs of small, rigid and inertially fixed rollers is shown in Fig. 1. The inertiallyfixed Cartesian coordinate system is shown located between the base rollers. The distance between the centers ofthe rollers is L and the acceleration due to gravity acting vertically downwards is g. The cable has mass density ρand its cross section is Ac . The tangential velocity of each material particle of the cable is v . Distributed externalforces acting on the cable are also shown in Fig. 1. The transverse in-plane displacement of a generic materialpoint of cable, located at a distance x along the X-axis, at time t , is taken as y(x, t). The governing equation alongwith boundary condition derived using Newton’s second law or Hamilton’s principle is
(
v2 − T (x)

ρAc

)
∂2y(x, t)
∂x2 + 2v ∂2y(x, t)

∂x∂t + ∂2y(x, t)
∂t2 + (V (x)

ρAc
− g
)
∂y(x, t)
∂x = H(x)

ρAc
, with y(0, t) = y(L, t) = 0,(1)

where T (x) = T0 + ρAcgx −
x∫
0 V (x)dx , and T0 is the known tension at the cable’s lower end. The Galerkin

projection method [2] is employed for solving Eq. (1). Towards that end we assume y(x, t) ≈
∑N

n=1 bn(t)ψn(x) over
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Figure 1: Obliquely traveling heavy cable, under external loading, between small fixed end-rollers.

the entire domain. Transient and modal solution are obtained by solving the discretized equations numerically atdifferent values of velocity for various values of inclination φ. Note that the shape functions ψn(x) are chosen as
sine functions which satisfy the homogeneous boundary conditions. Values of the critical velocity for various φ areidentified by the first occurrence of positive real part of any eigenvalue of system of equation. At this velocity thetransient solution shows exponential growth – implying instability.
3 Energetics and experimental verification
Energy analysis of a vertical system (i.e. φ = 0) shows that the rate of change of total energy of the system withtime is nonzero. There is energy influx and efflux from the boundaries and power input by the gravity into thesystem. The latter contribution diminishes with increasing inclination. It is absent for a horizontal system [9] (i.e.
φ = π/2). In any case, the nonzero energy rate is an insufficient criterion to explain the instability of a travelingcable system.We have built an experimental set-up, in which a bicycle chain is run between fixed sprockets. One of thethese is driven by a motor whose speed is adjustable. The inclination of the system may also be set to any desiredangle. We expect to see whether the critical velocity obtained from numerics matches with that observed throughthis experiment.
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